nevanlinna/Nevanlinna/stronglyMeromorphicOn_eliminate.lean

590 lines
19 KiB
Plaintext
Raw Normal View History

2024-11-07 12:08:52 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
2024-11-19 16:33:33 +01:00
import Nevanlinna.meromorphicOn
2024-11-07 12:08:52 +01:00
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
2024-11-26 20:04:58 +01:00
import Nevanlinna.stronglyMeromorphicOn_ratlPolynomial
2024-11-12 16:49:07 +01:00
import Nevanlinna.mathlibAddOn
2024-11-07 12:08:52 +01:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-11-19 07:16:04 +01:00
theorem MeromorphicOn.decompose₁
{f : }
{U : Set }
{z₀ : }
(h₁f : MeromorphicOn f U)
2024-11-19 10:07:20 +01:00
(h₂f : StronglyMeromorphicAt f z₀)
2024-11-19 13:20:19 +01:00
(h₃f : h₂f.meromorphicAt.order ≠ )
(hz₀ : z₀ ∈ U) :
2024-11-19 07:16:04 +01:00
∃ g : , (MeromorphicOn g U)
∧ (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
have h₁h₁ : MeromorphicOn h₁ U := by
apply MeromorphicOn.zpow
apply AnalyticOnNhd.meromorphicOn
apply AnalyticOnNhd.sub
exact analyticOnNhd_id
exact analyticOnNhd_const
2024-11-19 08:45:20 +01:00
let n : := (-h₁f.divisor z₀)
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
intro z hz
simp
2024-11-19 07:16:04 +01:00
let g₁ := f * h₁
have h₁g₁ : MeromorphicOn g₁ U := by
apply h₁f.mul h₁h₁
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
2024-11-19 10:07:20 +01:00
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
rw [h₂h₁]
unfold n
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
conv =>
left
left
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
have
(a b c : )
(h : a + b = c) :
(a : WithTop ) + (b : WithTop ) = (c : WithTop ) := by
rw [← h]
simp
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
simp
ring
2024-11-19 07:16:04 +01:00
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
have h₂g : StronglyMeromorphicAt g z₀ := by
2024-11-19 10:07:20 +01:00
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
have h₁g : MeromorphicOn g U := by
intro z hz
by_cases h₁z : z = z₀
· rw [h₁z]
apply h₂g.meromorphicAt
· apply (h₁g₁ z hz).congr
rw [eventuallyEq_nhdsWithin_iff]
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y h₁y h₂y
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
unfold g
rw [← A]
· constructor
· exact isOpen_compl_singleton
· exact h₁z
2024-11-19 11:31:24 +01:00
have h₃g : (h₁g z₀ hz₀).order = 0 := by
unfold g
let B := m₂ (h₁g₁ z₀ hz₀)
let A := (h₁g₁ z₀ hz₀).order_congr B
rw [← A]
rw [h₂g₁]
have h₄g : AnalyticAt g z₀ := by
apply h₂g.analytic
rw [h₃g]
2024-11-19 10:07:20 +01:00
2024-11-19 07:16:04 +01:00
use g
constructor
· exact h₁g
· constructor
2024-11-19 11:31:24 +01:00
· exact h₄g
2024-11-19 07:16:04 +01:00
· constructor
2024-11-19 11:31:24 +01:00
· exact (h₂g.order_eq_zero_iff).mp h₃g
· funext z
by_cases hz : z = z₀
· rw [hz]
simp
by_cases h : h₁f.divisor z₀ = 0
· simp [h]
have h₂h₁ : h₁ = 1 := by
funext w
unfold h₁
simp [h]
have h₃g₁ : g₁ = f := by
unfold g₁
rw [h₂h₁]
simp
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
rwa [h₃g₁]
let A := h₄g₁.makeStronglyMeromorphic_id
unfold g
rw [← A, h₃g₁]
· have : (0 : ) ^ h₁f.divisor z₀ = (0 : ) := by
exact zero_zpow (h₁f.divisor z₀) h
rw [this]
simp
let A := h₂f.order_eq_zero_iff.not
simp at A
rw [← A]
unfold MeromorphicOn.divisor at h
simp [hz₀] at h
exact h.1
· simp
let B := m₁ (h₁g₁ z₀ hz₀) z hz
unfold g
rw [← B]
unfold g₁ h₁
simp [hz]
rw [mul_assoc]
rw [inv_mul_cancel₀]
simp
apply zpow_ne_zero
rwa [sub_ne_zero]
theorem MeromorphicOn.decompose₂
{f : }
{U : Set }
2024-11-19 13:20:19 +01:00
{P : Finset U}
(hf : StronglyMeromorphicOn f U) :
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
apply Finset.induction (p := fun (P : Finset U) ↦
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
-- case empty
simp
exact hf.meromorphicOn
-- case insert
intro u P hu iHyp
intro hOrder
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
2024-11-19 15:54:28 +01:00
have h₀ : AnalyticAt (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
funext w
simp
rw [this]
apply Finset.analyticAt_prod
intro p hp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
2024-11-19 15:54:28 +01:00
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro p hp
apply zpow_ne_zero
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
2024-11-19 15:54:28 +01:00
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
rw [← h₄g₀]
exact hf u u.2
2024-11-19 13:20:19 +01:00
have h₆g₀ : (h₁g₀ u u.2).order ≠ := by
2024-11-19 15:54:28 +01:00
by_contra hCon
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
simp_rw [← h₄g₀, hCon] at A
simp at A
let B := hOrder u (Finset.mem_insert_self u P)
tauto
2024-11-19 13:20:19 +01:00
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
use g
· constructor
· exact h₁g
· constructor
2024-11-19 15:54:28 +01:00
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· let A := h₂g₀ ⟨v₁, hv⟩
rw [h₄g] at A
rw [← analyticAt_of_mul_analytic] at A
simp at A
exact A
--
simp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
--
apply zpow_ne_zero
simp
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
2024-11-19 13:20:19 +01:00
· constructor
2024-11-19 15:54:28 +01:00
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· by_contra hCon
let A := h₃g₀ ⟨v₁,hv⟩
rw [h₄g] at A
simp at A
tauto
· conv =>
left
rw [h₄g₀, h₄g]
simp
rw [mul_assoc]
congr
rw [Finset.prod_insert]
simp
congr
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact Eq.eventuallyEq h₄g₀
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
rw [C]
let D := h₀.order_eq_zero_iff.2 h₁
let E := h₀.meromorphicAt_order
rw [E, D]
simp
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
unfold MeromorphicOn.divisor
simp
rw [this]
rw [this]
--
simpa
2024-11-19 16:33:33 +01:00
2024-11-26 20:04:58 +01:00
theorem MeromorphicOn.decompose₃'
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
2024-12-03 16:54:13 +01:00
∧ (AnalyticOnNhd g U)
2024-11-26 20:04:58 +01:00
∧ (∀ u : U, g u ≠ 0)
∧ (f = g * ∏ᶠ u, fun z ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) := by
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := MeromorphicOn.order_ne_top h₂U h₁f h₂f
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := h₁f.meromorphicOn.divisor.finiteSupport h₁U
let d := - h₁f.meromorphicOn.divisor.toFun
have h₁d : d.support = (Function.support h₁f.meromorphicOn.divisor) := by
ext x
unfold d
simp
2024-11-26 20:04:58 +01:00
let h₁ := ∏ᶠ u, fun z ↦ (z - u) ^ (d u)
have h₁h₁ : StronglyMeromorphicOn h₁ U := by
intro z hz
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
2024-11-27 11:54:31 +01:00
apply stronglyMeromorphicOn_divisor_ratlPolynomial_U
rwa [h₁d]
--
rw [h₁d]
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
have h₃h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ := by
2024-11-27 11:54:31 +01:00
intro z hz
2024-11-28 18:57:43 +01:00
apply stronglyMeromorphicOn_ratlPolynomial₃order
2024-11-29 07:09:01 +01:00
have h₄h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by
intro z hz
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁]
rwa [h₁d]
2024-11-27 11:54:31 +01:00
2024-11-26 20:04:58 +01:00
let g' := f * h₁
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
have h₂g' : h₁g'.divisor.toFun = 0 := by
rw [MeromorphicOn.divisor_mul h₁f.meromorphicOn (fun z hz ↦ h₃f ⟨z, hz⟩) h₁h₁.meromorphicOn h₃h₁]
rw [h₂h₁]
unfold d
2024-11-26 20:04:58 +01:00
simp
2024-11-29 07:09:01 +01:00
have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by
intro u
rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt]
rw [h₄h₁]
unfold d
unfold MeromorphicOn.divisor
simp
have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by
rw [eq_comm]
let A := h₃f u
exact untop'_of_ne_top A
rw [this]
simp
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [← WithTop.coe_add]
simp
exact u.2
2024-11-26 20:04:58 +01:00
let g := h₁g'.makeStronglyMeromorphicOn
2024-11-28 18:57:43 +01:00
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
2024-11-26 20:04:58 +01:00
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
2024-11-28 18:57:43 +01:00
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
rw [h₂g']
have h₃g : AnalyticOnNhd g U := by
apply StronglyMeromorphicOn.analyticOnNhd
rw [h₂g]
simp
assumption
2024-11-26 20:04:58 +01:00
have h₄g : ∀ u : U, g u ≠ 0 := by
2024-11-28 18:57:43 +01:00
intro u
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
2024-11-29 07:09:01 +01:00
rw [makeStronglyMeromorphicOn_changeOrder]
let A := h₃g' u
exact A
exact u.2
2024-11-26 20:04:58 +01:00
use g
constructor
· exact StronglyMeromorphicOn.meromorphicOn h₁g
· constructor
2024-12-03 16:54:13 +01:00
· exact h₃g
2024-11-26 20:04:58 +01:00
· constructor
· exact h₄g
2024-11-29 13:24:20 +01:00
· have t₀ : StronglyMeromorphicOn (g * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) U := by
apply stronglyMeromorphicOn_of_mul_analytic' h₃g h₄g
apply stronglyMeromorphicOn_ratlPolynomial₃U
funext z
by_cases hz : z ∈ U
· apply Filter.EventuallyEq.eq_of_nhds
apply StronglyMeromorphicAt.localIdentity (h₁f z hz) (t₀ z hz)
have h₅g : g =ᶠ[𝓝[≠] z] g' := makeStronglyMeromorphicOn_changeDiscrete h₁g' hz
have Y' : (g' * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) =ᶠ[𝓝[≠] z] g * ∏ᶠ (u : ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u) := by
apply Filter.EventuallyEq.symm
exact Filter.EventuallyEq.mul h₅g (by simp)
apply Filter.EventuallyEq.trans _ Y'
unfold g'
unfold h₁
let A := h₁f.meromorphicOn.divisor.locallyFiniteInU z hz
let B := eventually_nhdsWithin_iff.1 A
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 B
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
use t
constructor
· intro y h₁y h₂y
let C := h₁t y h₁y h₂y
rw [mul_assoc]
simp
have : (finprod (fun u z => (z - u) ^ d u) y * finprod (fun u z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) y) = 1 := by
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
rwa [ratlPoly_mulsupport, h₁d]
rw [finprod_eq_prod _ t₀]
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
rwa [ratlPoly_mulsupport]
rw [finprod_eq_prod _ t₁]
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
rw [ratlPoly_mulsupport]
rw [ratlPoly_mulsupport]
unfold d
simp
have : t₀.toFinset = t₁.toFinset := by congr
rw [this]
simp
rw [← Finset.prod_mul_distrib]
apply Finset.prod_eq_one
intro x hx
apply zpow_neg_mul_zpow_self
have : y ∉ t₁.toFinset := by
simp
simp at C
rw [C]
simp
tauto
by_contra H
rw [sub_eq_zero] at H
rw [H] at this
tauto
rw [this]
simp
· exact ⟨h₂t, h₃t⟩
· simp
have : g z = g' z := by
unfold g
unfold MeromorphicOn.makeStronglyMeromorphicOn
simp [hz]
rw [this]
unfold g'
unfold h₁
simp
rw [mul_assoc]
nth_rw 1 [← mul_one (f z)]
congr
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
rwa [ratlPoly_mulsupport, h₁d]
rw [finprod_eq_prod _ t₀]
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
rwa [ratlPoly_mulsupport]
rw [finprod_eq_prod _ t₁]
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
rw [ratlPoly_mulsupport]
rw [ratlPoly_mulsupport]
unfold d
simp
have : t₀.toFinset = t₁.toFinset := by congr
rw [this]
simp
rw [← Finset.prod_mul_distrib]
rw [eq_comm]
apply Finset.prod_eq_one
intro x hx
apply zpow_neg_mul_zpow_self
have : z ∉ t₁.toFinset := by
simp
have : h₁f.meromorphicOn.divisor z = 0 := by
let A := h₁f.meromorphicOn.divisor.supportInU
simp at A
by_contra H
let B := A z H
tauto
rw [this]
simp
rfl
by_contra H
rw [sub_eq_zero] at H
rw [H] at this
tauto
2024-12-13 16:03:00 +01:00
theorem MeromorphicOn.decompose_log
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticOnNhd g U)
∧ (∀ u : U, g u ≠ 0)
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] fun z ↦ log ‖g z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ := by
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₁U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have hSupp₁ {z : } : (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖).support ⊆ h₃f.toFinset := by
intro x
contrapose
simp; tauto
simp_rw [finsum_eq_sum_of_support_subset _ hSupp₁]
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₃' h₁U h₂U h₁f h₂f
have hSupp₂ {z : } : ( fun (u : ) ↦ (fun (z : ) ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) ).mulSupport ⊆ h₃f.toFinset := by
intro x
contrapose
simp
intro hx
rw [hx]
simp; tauto
rw [finprod_eq_prod_of_mulSupport_subset _ hSupp₂] at h₄g
use g
simp only [h₁g, h₂g, h₃g, ne_eq, true_and, not_false_eq_true, implies_true]
rw [Filter.eventuallyEq_iff_exists_mem]
use {z | f z ≠ 0}
constructor
· sorry
· intro z hz
nth_rw 1 [h₄g]
simp
rw [log_mul, log_prod]
congr
ext u
rw [log_zpow]
--
2024-12-13 16:03:00 +01:00
intro x hx
simp at hx
have h₁x : x ∈ U := by
exact h₁f.meromorphicOn.divisor.supportInU hx
2024-12-13 16:03:00 +01:00
apply zpow_ne_zero
simp
by_contra hCon
rw [← hCon] at hx
unfold MeromorphicOn.divisor at hx
rw [hCon] at hz
2024-12-13 16:03:00 +01:00
simp at hz
let A := (h₁f x h₁x).order_eq_zero_iff
let B := A.2 hz
simp [B] at hx
obtain ⟨a, b⟩ := hx
let c := b.1
simp_rw [hCon] at c
tauto
--
simp at hz
by_contra hCon
simp at hCon
rw [h₄g] at hz
simp at hz
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
have h₁x : x ∈ U := by
exact h₁f.meromorphicOn.divisor.supportInU hx
2024-12-13 16:03:00 +01:00
apply zpow_ne_zero
simp
2024-12-13 16:03:00 +01:00
by_contra hCon
rw [← hCon] at hx
unfold MeromorphicOn.divisor at hx
rw [hCon] at hz
simp at hz
let A := (h₁f x h₁x).order_eq_zero_iff
let B := A.2 hz
simp [B] at hx
obtain ⟨a, b⟩ := hx
let c := b.1
simp_rw [hCon] at c
tauto