Update stronglyMeromorphicOn_eliminate.lean

This commit is contained in:
Stefan Kebekus 2024-12-13 16:24:24 +01:00
parent 1c02007e1e
commit e80aebfe38

View File

@ -537,15 +537,53 @@ theorem MeromorphicOn.decompose_log
congr
ext u
rw [log_zpow]
--
intro x hx
simp at hx
simp
have h₁x : x ∈ U := by
exact h₁f.meromorphicOn.divisor.supportInU hx
apply zpow_ne_zero
simp
by_contra hCon
rw [← hCon] at hx
unfold MeromorphicOn.divisor at hx
rw [hCon] at hz
simp at hz
contrapose
let A := (h₁f x h₁x).order_eq_zero_iff
let B := A.2 hz
simp [B] at hx
obtain ⟨a, b⟩ := hx
let c := b.1
simp_rw [hCon] at c
tauto
--
simp at hz
by_contra hCon
simp at hCon
rw [h₄g] at hz
simp at hz
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
have h₁x : x ∈ U := by
exact h₁f.meromorphicOn.divisor.supportInU hx
apply zpow_ne_zero
simp
repeat
sorry
by_contra hCon
rw [← hCon] at hx
unfold MeromorphicOn.divisor at hx
rw [hCon] at hz
simp at hz
let A := (h₁f x h₁x).order_eq_zero_iff
let B := A.2 hz
simp [B] at hx
obtain ⟨a, b⟩ := hx
let c := b.1
simp_rw [hCon] at c
tauto