Working…
This commit is contained in:
parent
9be57a898c
commit
8525ae1ece
|
@ -376,8 +376,14 @@ theorem MeromorphicOn.decompose₃'
|
|||
intro z hz
|
||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||||
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
|
||||
sorry
|
||||
apply stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||
rwa [h₁d]
|
||||
--
|
||||
rw [h₁d]
|
||||
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||
intro z hz
|
||||
|
||||
sorry
|
||||
let g' := f * h₁
|
||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||
|
|
|
@ -61,6 +61,13 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
|||
apply AnalyticOn.stronglyMeromorphicOn
|
||||
apply analyticOnNhd_const
|
||||
|
||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
||||
(d : ℂ → ℤ)
|
||||
(U : Set ℂ) :
|
||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||||
intro z hz
|
||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||
{z : ℂ}
|
||||
|
@ -142,3 +149,21 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
|||
simp
|
||||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||
simp
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||
{U : Set ℂ}
|
||||
(d : ℂ → ℤ)
|
||||
(h₁d : Set.Finite d.support)
|
||||
(h₂d : d.support ⊆ U) :
|
||||
(stronglyMeromorphicOn_ratlPolynomial₃U d U).meromorphicOn.divisor = d := by
|
||||
|
||||
funext z
|
||||
rw [MeromorphicOn.divisor]
|
||||
simp
|
||||
by_cases hz : z ∈ U
|
||||
· simp [hz]
|
||||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||
simp
|
||||
· simp [hz]
|
||||
rw [eq_comm, ← Function.nmem_support]
|
||||
tauto
|
||||
|
|
Loading…
Reference in New Issue