working…
This commit is contained in:
parent
226609f9c0
commit
69b9ad6d3b
@ -74,3 +74,29 @@ noncomputable def MeromorphicOn.divisor
|
||||
simp
|
||||
· simp [h₃y]
|
||||
· tauto
|
||||
|
||||
|
||||
theorem MeromorphicOn.divisor_def₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z : ℂ}
|
||||
(hf : MeromorphicOn f U)
|
||||
(hz : z ∈ U) :
|
||||
hf.divisor z = ((hf z hz).order.untop' 0 : ℤ) := by
|
||||
unfold MeromorphicOn.divisor
|
||||
simp [hz]
|
||||
|
||||
|
||||
theorem MeromorphicOn.divisor_def₂
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z : ℂ}
|
||||
(hf : MeromorphicOn f U)
|
||||
(hz : z ∈ U)
|
||||
(h₂f : (hf z hz).order ≠ ⊤) :
|
||||
hf.divisor z = (hf z hz).order.untop h₂f := by
|
||||
unfold MeromorphicOn.divisor
|
||||
simp [hz]
|
||||
rw [WithTop.untop'_eq_iff]
|
||||
left
|
||||
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
||||
|
@ -10,6 +10,13 @@ import Nevanlinna.mathlibAddOn
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
lemma untop_eq_untop'
|
||||
{n : WithTop ℤ}
|
||||
(hn : n ≠ ⊤) :
|
||||
n.untop' 0 = n.untop hn := by
|
||||
rw [WithTop.untop'_eq_iff]
|
||||
simp
|
||||
|
||||
|
||||
theorem MeromorphicOn.decompose₁
|
||||
{f : ℂ → ℂ}
|
||||
@ -17,7 +24,8 @@ theorem MeromorphicOn.decompose₁
|
||||
{z₀ : ℂ}
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(h₁f : MeromorphicOn f U)
|
||||
(h₂f : StronglyMeromorphicAt f z₀) :
|
||||
(h₂f : StronglyMeromorphicAt f z₀)
|
||||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤) :
|
||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||
∧ (AnalyticAt ℂ g z₀)
|
||||
∧ (g z₀ ≠ 0)
|
||||
@ -46,20 +54,52 @@ theorem MeromorphicOn.decompose₁
|
||||
have h₁g₁ : MeromorphicOn g₁ U := by
|
||||
apply h₁f.mul h₁h₁
|
||||
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
|
||||
let A := (h₁g₁ z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)
|
||||
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
|
||||
rw [h₂h₁]
|
||||
unfold n
|
||||
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
|
||||
conv =>
|
||||
left
|
||||
left
|
||||
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
|
||||
have
|
||||
(a b c : ℤ)
|
||||
(h : a + b = c) :
|
||||
(a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by
|
||||
rw [← h]
|
||||
simp
|
||||
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
|
||||
simp
|
||||
ring
|
||||
|
||||
sorry
|
||||
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
|
||||
have h₁g : MeromorphicOn g U := by
|
||||
sorry
|
||||
have h₂g : StronglyMeromorphicAt g z₀ := by
|
||||
sorry
|
||||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
|
||||
have h₁g : MeromorphicOn g U := by
|
||||
intro z hz
|
||||
by_cases h₁z : z = z₀
|
||||
· rw [h₁z]
|
||||
apply h₂g.meromorphicAt
|
||||
· apply (h₁g₁ z hz).congr
|
||||
rw [eventuallyEq_nhdsWithin_iff]
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
|
||||
unfold g
|
||||
rw [← A]
|
||||
· constructor
|
||||
· exact isOpen_compl_singleton
|
||||
· exact h₁z
|
||||
|
||||
use g
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· apply h₂g.analytic
|
||||
|
||||
|
||||
sorry
|
||||
· constructor
|
||||
· sorry
|
||||
|
Loading…
Reference in New Issue
Block a user