Working.
This commit is contained in:
parent
3f24072412
commit
e20dcdbd19
@ -75,9 +75,6 @@ lemma WithTopCoe
|
||||
rw [this]
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
|
||||
lemma rwx
|
||||
{a b : WithTop ℤ}
|
||||
(ha : a ≠ ⊤)
|
||||
@ -94,3 +91,12 @@ lemma untop_add
|
||||
rw [WithTop.coe_add]
|
||||
rw [WithTop.coe_untop]
|
||||
rw [WithTop.coe_untop]
|
||||
|
||||
lemma untop'_of_ne_top
|
||||
{a : WithTop ℤ}
|
||||
{d : ℤ}
|
||||
(ha : a ≠ ⊤) :
|
||||
WithTop.untop' d a = a := by
|
||||
obtain ⟨b, hb⟩ := WithTop.ne_top_iff_exists.1 ha
|
||||
rw [← hb]
|
||||
simp
|
||||
|
@ -102,3 +102,14 @@ theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
||||
let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz
|
||||
rw [stronglyMeromorphicAt_congr A]
|
||||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz)
|
||||
|
||||
|
||||
theorem makeStronglyMeromorphicOn_changeOrder
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicOn f U)
|
||||
(hz₀ : z₀ ∈ U) :
|
||||
(stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf z₀ hz₀).meromorphicAt.order = (hf z₀ hz₀).order := by
|
||||
apply MeromorphicAt.order_congr
|
||||
exact makeStronglyMeromorphicOn_changeDiscrete hf hz₀
|
||||
|
@ -383,6 +383,10 @@ theorem MeromorphicOn.decompose₃'
|
||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||
intro z hz
|
||||
apply stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
have h₄h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by
|
||||
intro z hz
|
||||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁]
|
||||
rwa [h₁d]
|
||||
|
||||
let g' := f * h₁
|
||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||
@ -391,6 +395,23 @@ theorem MeromorphicOn.decompose₃'
|
||||
rw [h₂h₁]
|
||||
unfold d
|
||||
simp
|
||||
have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by
|
||||
intro u
|
||||
rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt]
|
||||
rw [h₄h₁]
|
||||
unfold d
|
||||
unfold MeromorphicOn.divisor
|
||||
simp
|
||||
have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by
|
||||
rw [eq_comm]
|
||||
let A := h₃f u
|
||||
exact untop'_of_ne_top A
|
||||
rw [this]
|
||||
simp
|
||||
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
|
||||
rw [← WithTop.coe_add]
|
||||
simp
|
||||
exact u.2
|
||||
|
||||
let g := h₁g'.makeStronglyMeromorphicOn
|
||||
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
|
||||
@ -405,8 +426,10 @@ theorem MeromorphicOn.decompose₃'
|
||||
have h₄g : ∀ u : U, g u ≠ 0 := by
|
||||
intro u
|
||||
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
|
||||
|
||||
sorry
|
||||
rw [makeStronglyMeromorphicOn_changeOrder]
|
||||
let A := h₃g' u
|
||||
exact A
|
||||
exact u.2
|
||||
|
||||
use g
|
||||
constructor
|
||||
|
Loading…
Reference in New Issue
Block a user