diff --git a/Nevanlinna/mathlibAddOn.lean b/Nevanlinna/mathlibAddOn.lean index f25169c..e4f8814 100644 --- a/Nevanlinna/mathlibAddOn.lean +++ b/Nevanlinna/mathlibAddOn.lean @@ -75,9 +75,6 @@ lemma WithTopCoe rw [this] rfl - - - lemma rwx {a b : WithTop ℤ} (ha : a ≠ ⊤) @@ -94,3 +91,12 @@ lemma untop_add rw [WithTop.coe_add] rw [WithTop.coe_untop] rw [WithTop.coe_untop] + +lemma untop'_of_ne_top + {a : WithTop ℤ} + {d : ℤ} + (ha : a ≠ ⊤) : + WithTop.untop' d a = a := by + obtain ⟨b, hb⟩ := WithTop.ne_top_iff_exists.1 ha + rw [← hb] + simp diff --git a/Nevanlinna/stronglyMeromorphicOn.lean b/Nevanlinna/stronglyMeromorphicOn.lean index 8ef4846..51088c5 100644 --- a/Nevanlinna/stronglyMeromorphicOn.lean +++ b/Nevanlinna/stronglyMeromorphicOn.lean @@ -102,3 +102,14 @@ theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz rw [stronglyMeromorphicAt_congr A] exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz) + + +theorem makeStronglyMeromorphicOn_changeOrder + {f : ℂ → ℂ} + {U : Set ℂ} + {z₀ : ℂ} + (hf : MeromorphicOn f U) + (hz₀ : z₀ ∈ U) : + (stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf z₀ hz₀).meromorphicAt.order = (hf z₀ hz₀).order := by + apply MeromorphicAt.order_congr + exact makeStronglyMeromorphicOn_changeDiscrete hf hz₀ diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index 6273835..7d6ef21 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -383,6 +383,10 @@ theorem MeromorphicOn.decompose₃' have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by intro z hz apply stronglyMeromorphicOn_ratlPolynomial₃order + have h₄h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by + intro z hz + rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁] + rwa [h₁d] let g' := f * h₁ have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn @@ -391,6 +395,23 @@ theorem MeromorphicOn.decompose₃' rw [h₂h₁] unfold d simp + have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by + intro u + rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt] + rw [h₄h₁] + unfold d + unfold MeromorphicOn.divisor + simp + have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by + rw [eq_comm] + let A := h₃f u + exact untop'_of_ne_top A + rw [this] + simp + rw [← WithTop.LinearOrderedAddCommGroup.coe_neg] + rw [← WithTop.coe_add] + simp + exact u.2 let g := h₁g'.makeStronglyMeromorphicOn have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g' @@ -405,8 +426,10 @@ theorem MeromorphicOn.decompose₃' have h₄g : ∀ u : U, g u ≠ 0 := by intro u rw [← (h₁g u.1 u.2).order_eq_zero_iff] - - sorry + rw [makeStronglyMeromorphicOn_changeOrder] + let A := h₃g' u + exact A + exact u.2 use g constructor