Working…
This commit is contained in:
parent
68acec101e
commit
c5dc9ea786
|
@ -54,6 +54,7 @@ theorem MeromorphicOn.open_of_order_eq_top
|
|||
· exact isOpen_induced h₂t'
|
||||
· exact h₃t'
|
||||
|
||||
|
||||
theorem MeromorphicOn.open_of_order_neq_top
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
|
@ -99,15 +100,4 @@ theorem MeromorphicOn.order_ne_top
|
|||
(h₁f : MeromorphicOn f U) :
|
||||
(∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order = ⊤) := by
|
||||
|
||||
constructor
|
||||
· intro h
|
||||
obtain ⟨h₁z₀, h₂z₀⟩ := h
|
||||
intro hz
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
· intro h
|
||||
obtain ⟨w, hw⟩ := h₁U.nonempty
|
||||
use ⟨w, hw⟩
|
||||
exact h ⟨w, hw⟩
|
||||
sorry
|
||||
|
|
|
@ -11,6 +11,53 @@ open scoped Interval Topology
|
|||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
|
||||
theorem MeromorphicOn.decompose₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(h₁f : MeromorphicOn f U)
|
||||
(h₂f : StronglyMeromorphicAt f z₀) :
|
||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||
∧ (AnalyticAt ℂ g z₀)
|
||||
∧ (g z₀ ≠ 0)
|
||||
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
|
||||
|
||||
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
|
||||
have h₁h₁ : MeromorphicOn h₁ U := by
|
||||
apply MeromorphicOn.zpow
|
||||
apply AnalyticOnNhd.meromorphicOn
|
||||
apply AnalyticOnNhd.sub
|
||||
exact analyticOnNhd_id
|
||||
exact analyticOnNhd_const
|
||||
have h₂h₁ : (h₁h₁ z₀ hz₀).order = -h₁f.divisor z₀ := by
|
||||
|
||||
sorry
|
||||
|
||||
let g₁ := f * h₁
|
||||
have h₁g₁ : MeromorphicOn g₁ U := by
|
||||
apply h₁f.mul h₁h₁
|
||||
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
|
||||
let A := (h₁g₁ z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)
|
||||
|
||||
sorry
|
||||
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
|
||||
have h₁g : MeromorphicOn g U := by
|
||||
sorry
|
||||
have h₂g : StronglyMeromorphicAt g z₀ := by
|
||||
sorry
|
||||
use g
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· apply h₂g.analytic
|
||||
|
||||
sorry
|
||||
· constructor
|
||||
· sorry
|
||||
· sorry
|
||||
|
||||
|
||||
|
||||
theorem MeromorphicOn.decompose
|
||||
{f : ℂ → ℂ}
|
||||
|
|
Loading…
Reference in New Issue