diff --git a/Nevanlinna/meromorphicOn.lean b/Nevanlinna/meromorphicOn.lean index 4ebf212..4e2211b 100644 --- a/Nevanlinna/meromorphicOn.lean +++ b/Nevanlinna/meromorphicOn.lean @@ -54,6 +54,7 @@ theorem MeromorphicOn.open_of_order_eq_top · exact isOpen_induced h₂t' · exact h₃t' + theorem MeromorphicOn.open_of_order_neq_top {f : ℂ → ℂ} {U : Set ℂ} @@ -99,15 +100,4 @@ theorem MeromorphicOn.order_ne_top (h₁f : MeromorphicOn f U) : (∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order = ⊤) := by - constructor - · intro h - obtain ⟨h₁z₀, h₂z₀⟩ := h - intro hz - - - sorry - - · intro h - obtain ⟨w, hw⟩ := h₁U.nonempty - use ⟨w, hw⟩ - exact h ⟨w, hw⟩ + sorry diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index a63406a..632938f 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -11,6 +11,53 @@ open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral +theorem MeromorphicOn.decompose₁ + {f : ℂ → ℂ} + {U : Set ℂ} + {z₀ : ℂ} + (hz₀ : z₀ ∈ U) + (h₁f : MeromorphicOn f U) + (h₂f : StronglyMeromorphicAt f z₀) : + ∃ g : ℂ → ℂ, (MeromorphicOn g U) + ∧ (AnalyticAt ℂ g z₀) + ∧ (g z₀ ≠ 0) + ∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by + + let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀) + have h₁h₁ : MeromorphicOn h₁ U := by + apply MeromorphicOn.zpow + apply AnalyticOnNhd.meromorphicOn + apply AnalyticOnNhd.sub + exact analyticOnNhd_id + exact analyticOnNhd_const + have h₂h₁ : (h₁h₁ z₀ hz₀).order = -h₁f.divisor z₀ := by + + sorry + + let g₁ := f * h₁ + have h₁g₁ : MeromorphicOn g₁ U := by + apply h₁f.mul h₁h₁ + have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by + let A := (h₁g₁ z₀ hz₀).order_mul (h₁h₁ z₀ hz₀) + + sorry + let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt + have h₁g : MeromorphicOn g U := by + sorry + have h₂g : StronglyMeromorphicAt g z₀ := by + sorry + use g + constructor + · exact h₁g + · constructor + · apply h₂g.analytic + + sorry + · constructor + · sorry + · sorry + + theorem MeromorphicOn.decompose {f : ℂ → ℂ}