Update meromorphicOn.lean

This commit is contained in:
Stefan Kebekus 2024-11-18 19:27:51 +01:00
parent 12888b75fb
commit 68acec101e

View File

@ -54,6 +54,44 @@ theorem MeromorphicOn.open_of_order_eq_top
· exact isOpen_induced h₂t'
· exact h₃t'
theorem MeromorphicOn.open_of_order_neq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order ≠ } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
rcases A with h|h
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
tauto
· let A := (h₁f z.1 z.2).eventually_analyticAt
let B := Filter.Eventually.and h A
rw [eventually_nhdsWithin_iff] at B
rw [eventually_nhds_iff] at B
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
let t : Set U := Subtype.val ⁻¹' t'
use t
constructor
· intro w hw
simp
by_cases h₁w : w = z
· rwa [h₁w]
· let B := h₁t' w hw
simp at B
have : (w : ) ≠ (z : ) := by exact Subtype.coe_ne_coe.mpr h₁w
let C := B this
let D := C.2.order_eq_zero_iff.2 C.1
rw [C.2.meromorphicAt_order, D]
simp
· constructor
· exact isOpen_induced h₂t'
· exact h₃t'
theorem MeromorphicOn.order_ne_top
{f : }
{U : Set }