Update stronglyMeromorphicOn_eliminate.lean
This commit is contained in:
parent
513c122036
commit
ab02fe715e
@ -172,7 +172,40 @@ theorem MeromorphicOn.decompose₂
|
||||
|
||||
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
|
||||
|
||||
sorry
|
||||
rw [stronglyMeromorphicAt_of_mul_analytic (g := ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) (z₀ := u) (f := g₀)]
|
||||
rw [← h₄g₀]
|
||||
exact hf u u.2
|
||||
--
|
||||
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||
funext w
|
||||
simp
|
||||
rw [this]
|
||||
apply Finset.analyticAt_prod
|
||||
intro p hp
|
||||
apply AnalyticAt.zpow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
apply analyticAt_const
|
||||
--
|
||||
by_contra hCon
|
||||
rw [sub_eq_zero] at hCon
|
||||
have : p.1 = u := by
|
||||
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||||
rw [← this] at hu
|
||||
simp [hp] at hu
|
||||
--
|
||||
simp only [Finset.prod_apply]
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro p hp
|
||||
apply zpow_ne_zero
|
||||
by_contra hCon
|
||||
rw [sub_eq_zero] at hCon
|
||||
have : p.1 = u := by
|
||||
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||||
rw [← this] at hu
|
||||
simp [hp] at hu
|
||||
|
||||
|
||||
have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by
|
||||
sorry
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user