nevanlinna/Nevanlinna/holomorphic_primitive2.lean

654 lines
20 KiB
Plaintext
Raw Normal View History

2024-08-01 12:38:33 +02:00
import Mathlib.Analysis.Complex.TaylorSeries
2024-08-01 13:51:15 +02:00
import Mathlib.Data.ENNReal.Basic
2024-08-01 12:38:33 +02:00
noncomputable def primitive
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
→ ( → E) → ( → E) := by
intro z₀
intro f
exact fun z ↦ (∫ (x : ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ) in z₀.im..z.im, f ⟨z.re, x⟩
theorem primitive_zeroAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ : ) :
(primitive z₀ f) z₀ = 0 := by
unfold primitive
simp
theorem primitive_fderivAtBasepointZero
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
2024-08-05 13:41:41 +02:00
(hf : ContinuousAt f 0) :
2024-08-01 12:38:33 +02:00
HasDerivAt (primitive 0 f) (f 0) 0 := by
unfold primitive
simp
apply hasDerivAt_iff_isLittleO.2
simp
rw [Asymptotics.isLittleO_iff]
intro c hc
have {z : } {e : E} : z • e = (∫ (_ : ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ) in (0)..(z.im), e:= by
simp
rw [smul_comm]
rw [← smul_assoc]
simp
have : z.re • e = (z.re : ) • e := by exact rfl
rw [this, ← add_smul]
simp
conv =>
left
intro x
left
arg 1
arg 2
rw [this]
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
have t₀ {r : } : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
continuity
have t₁ {r : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
conv =>
left
intro x
left
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem]
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ))
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
have h₂s : 0 ∈ s := by
apply Set.mem_preimage.mpr
apply Metric.mem_ball_self
linarith
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : )) := by
intro y hy
apply mem_ball_iff_norm.mp (h₂ε hy)
use Metric.ball 0 (ε / (4 : ))
constructor
· apply Metric.ball_mem_nhds 0
linarith
· intro y hy
have h₁y : |y.re| < ε / 4 := by
calc |y.re|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have h₂y : |y.im| < ε / 4 := by
calc |y.im|
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have intervalComputation {x' y' : } (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
let A := h.1
let B := h.2
rcases le_total 0 y' with hy | hy
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonneg hy]
rw [abs_of_nonneg (le_of_lt A)]
exact B
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonpos hy]
rw [abs_of_nonpos]
linarith [h.1]
exact B
have t₁ : ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : )) * |y.re - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.re| := intervalComputation hx
_ < ε / 4 := h₁y
apply le_of_lt
apply h₃ε { re := x, im := 0 }
rw [mem_ball_iff_norm]
simp
have : { re := x, im := 0 } = (x : ) := by rfl
rw [this]
rw [Complex.abs_ofReal]
linarith
have t₂ : ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : )) * |y.im - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.im| := intervalComputation hx
_ < ε / 4 := h₂y
apply le_of_lt
apply h₃ε { re := y.re, im := x }
simp
calc Complex.abs { re := y.re, im := x }
_ ≤ |y.re| + |x| := by
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
_ < ε := by
linarith
calc ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
apply norm_add_le
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
simp
rw [norm_smul]
simp
_ ≤ (c / (4 : )) * |y.re - 0| + (c / (4 : )) * |y.im - 0| := by
apply add_le_add
exact t₁
exact t₂
_ ≤ (c / (4 : )) * (|y.re| + |y.im|) := by
simp
rw [mul_add]
_ ≤ (c / (4 : )) * (4 * ‖y‖) := by
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
calc |y.re| + |y.im|
_ ≤ ‖y‖ + ‖y‖ := by
apply add_le_add
apply Complex.abs_re_le_abs
apply Complex.abs_im_le_abs
_ ≤ 4 * ‖y‖ := by
rw [← two_mul]
apply mul_le_mul
linarith
rfl
exact norm_nonneg y
linarith
apply mul_le_mul
rfl
exact this
apply add_nonneg
apply abs_nonneg
apply abs_nonneg
linarith
_ ≤ c * ‖y‖ := by
linarith
theorem primitive_translation
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ t : ) :
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
funext z
unfold primitive
simp
let g : → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
have {x : } : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
simp
congr 1
let g : → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
have {x : } : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
simp
theorem primitive_hasDerivAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
2024-08-05 13:41:41 +02:00
(z₀ : )
(hf : ContinuousAt f z₀) :
2024-08-01 12:38:33 +02:00
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
let g := f ∘ fun z ↦ z + z₀
have : Continuous g := by continuity
let A := primitive_fderivAtBasepointZero g this
simp at A
let B := primitive_translation g z₀ z₀
simp at B
have : (g ∘ fun z ↦ (z - z₀)) = f := by
funext z
dsimp [g]
simp
rw [this] at B
rw [B]
have : f z₀ = (1 : ) • (f z₀) := by
exact (MulAction.one_smul (f z₀)).symm
conv =>
arg 2
rw [this]
apply HasDerivAt.scomp
simp
have : g 0 = f z₀ := by simp [g]
rw [← this]
exact A
apply HasDerivAt.sub_const
have : (fun (x : ) ↦ x) = id := by
funext x
simp
rw [this]
exact hasDerivAt_id z₀
theorem primitive_additivity
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
2024-08-05 14:53:26 +02:00
{f : → E}
{z₀ : }
{rx ry : }
2024-08-03 07:20:01 +02:00
(hf : DifferentiableOn f (Metric.ball z₀.re rx × Metric.ball z₀.im ry))
2024-08-05 14:53:26 +02:00
(hry : 0 < ry)
{z₁ : }
2024-08-03 07:20:01 +02:00
(hz₁ : z₁ ∈ (Metric.ball z₀.re rx × Metric.ball z₀.im ry))
2024-08-02 11:22:41 +02:00
:
2024-08-05 14:53:26 +02:00
∃ εx > 0, ∃ εy > 0, ∀ z ∈ (Metric.ball z₁.re εx × Metric.ball z₁.im εy), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
let εx := rx - dist z₀.re z₁.re
have hεx : εx > 0 := by
sorry
let εy := ry - dist z₀.im z₁.im
have hεy : εy > 0 := by
sorry
use εx
use hεx
use εy
use hεy
2024-08-05 10:02:24 +02:00
2024-08-02 11:22:41 +02:00
intro z hz
2024-08-01 12:38:33 +02:00
unfold primitive
2024-08-02 12:46:21 +02:00
2024-08-02 14:47:39 +02:00
have : (∫ (x : ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
2024-08-02 12:46:21 +02:00
2024-08-02 14:47:39 +02:00
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₀.re z₁.re
2024-08-02 12:46:21 +02:00
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
2024-08-02 14:47:39 +02:00
have {b : } : ((fun x => { re := x, im := b }) : ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
2024-08-02 12:46:21 +02:00
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
apply Continuous.continuousOn
rw [this]
continuity
2024-08-05 10:02:24 +02:00
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
2024-08-02 12:46:21 +02:00
intro w hw
simp
2024-08-05 10:02:24 +02:00
apply Complex.mem_reProdIm.mpr
constructor
· simp
calc dist w z₀.re
2024-08-02 14:47:39 +02:00
_ ≤ dist z₁.re z₀.re := by apply Real.dist_right_le_of_mem_uIcc; rwa [Set.uIcc_comm] at hw
2024-08-05 10:02:24 +02:00
_ < rx := by apply Metric.mem_ball.mp (Complex.mem_reProdIm.1 hz₁).1
· simpa
2024-08-02 12:46:21 +02:00
2024-08-02 14:47:39 +02:00
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₁.re z.re
2024-08-02 12:46:21 +02:00
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
have {b : } : ((fun x => { re := x, im := b }) : ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
apply Continuous.continuousOn
rw [this]
continuity
2024-08-05 10:02:24 +02:00
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₁.re z.re) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
2024-08-02 12:46:21 +02:00
intro w hw
simp
2024-08-05 10:02:24 +02:00
constructor
· simp
calc dist w z₀.re
2024-08-02 14:47:39 +02:00
_ ≤ dist w z₁.re + dist z₁.re z₀.re := by exact dist_triangle w z₁.re z₀.re
2024-08-05 10:02:24 +02:00
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
rw [Set.uIcc_comm] at hw
exact Real.dist_right_le_of_mem_uIcc hw
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
2024-08-02 14:47:39 +02:00
simp
2024-08-05 10:02:24 +02:00
· simpa
2024-08-01 12:38:33 +02:00
rw [this]
2024-08-02 14:47:39 +02:00
2024-08-01 12:38:33 +02:00
have : (∫ (x : ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ) in z₁.im..z.im, f { re := z.re, im := x }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
2024-08-05 10:02:24 +02:00
2024-08-02 14:47:39 +02:00
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₀.im z₁.im
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
apply Continuous.continuousOn
have {b : }: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
fun_prop
fun_prop
2024-08-05 10:02:24 +02:00
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₀.im z₁.im) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
2024-08-02 14:47:39 +02:00
intro w hw
2024-08-05 10:02:24 +02:00
constructor
· simp
calc dist z.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist w z₀.im
_ ≤ dist z₁.im z₀.im := by rw [Set.uIcc_comm] at hw; exact Real.dist_right_le_of_mem_uIcc hw
_ < ry := by
rw [← Metric.mem_ball]
exact hz₁.2
2024-08-02 14:47:39 +02:00
2024-08-05 10:02:24 +02:00
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₁.im z.im
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf.continuousOn
apply Continuous.continuousOn
have {b : }: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
fun_prop
fun_prop
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₁.im z.im) (Metric.ball z₀.re rx × Metric.ball z₀.im ry)
intro w hw
constructor
· simp
calc dist z.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist w z₀.im
_ ≤ dist w z₁.im + dist z₁.im z₀.im := by exact dist_triangle w z₁.im z₀.im
_ ≤ dist z.im z₁.im + dist z₁.im z₀.im := by
apply (add_le_add_iff_right (dist z₁.im z₀.im)).mpr
rw [Set.uIcc_comm] at hw
exact Real.dist_right_le_of_mem_uIcc hw
_ < (ry - dist z₀.im z₁.im) + dist z₁.im z₀.im := by
apply (add_lt_add_iff_right (dist z₁.im z₀.im)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).2
_ = ry := by
rw [dist_comm]
simp
2024-08-01 12:38:33 +02:00
rw [this]
2024-08-05 10:02:24 +02:00
2024-08-01 12:38:33 +02:00
simp
have {a b c d e f g h : E} : (a + b) + (c + d) - (e + f) - (g + h) = b + (a - g) - e - f + d - h + (c) := by
abel
rw [this]
2024-08-02 14:47:39 +02:00
have H' : DifferentiableOn f (Set.uIcc z₁.re z.re × Set.uIcc z₀.im z₁.im) := by
2024-08-01 13:51:15 +02:00
apply DifferentiableOn.mono hf
intro x hx
2024-08-05 10:56:41 +02:00
constructor
· simp
calc dist x.re z₀.re
_ ≤ dist x.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle x.re z₁.re z₀.re
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
rw [Set.uIcc_comm] at hx
apply Real.dist_right_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).1
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
_ = rx := by
rw [dist_comm]
simp
· simp
calc dist x.im z₀.im
_ ≤ dist z₀.im z₁.im := by rw [dist_comm]; exact Real.dist_left_le_of_mem_uIcc (Complex.mem_reProdIm.1 hx).2
_ < ry := by
rw [dist_comm]
exact Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz₁).2
2024-08-01 13:51:15 +02:00
2024-08-02 14:47:39 +02:00
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H'
2024-08-01 12:38:33 +02:00
have {x : } {w : } : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
apply Complex.ext
· simp
· simp
simp_rw [this] at A
have {x : } {w : } : w.re + x * Complex.I = { re := w.re, im := x } := by
apply Complex.ext
· simp
· simp
simp_rw [this] at A
rw [← A]
abel
theorem primitive_additivity'
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
2024-08-05 13:47:20 +02:00
{f : → E}
{z₀ z₁ : }
{R : }
2024-08-05 12:41:05 +02:00
(hf : DifferentiableOn f (Metric.ball z₀ R))
2024-08-05 13:47:20 +02:00
(hz₁ : z₁ ∈ Metric.ball z₀ R)
2024-08-05 12:41:05 +02:00
:
2024-08-05 13:41:41 +02:00
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
2024-08-05 14:18:02 +02:00
let ε := R - dist z₀ z₁
2024-08-05 14:53:26 +02:00
have hε : 0 < ε := by
dsimp [ε]
simp
exact Metric.mem_ball'.mp hz₁
2024-08-05 14:18:02 +02:00
let rx := dist z₀.re z₁.re + ε/(2 : )
let ry := dist z₀.im z₁.im + ε/(2 : )
have h'ry : 0 < ry := by
2024-08-05 14:53:26 +02:00
dsimp [ry]
apply add_pos_of_nonneg_of_pos
exact dist_nonneg
simpa
2024-08-05 14:18:02 +02:00
have h'f : DifferentiableOn f (Metric.ball z₀.re rx × Metric.ball z₀.im ry) := by
2024-08-05 14:53:26 +02:00
apply hf.mono
intro x hx
simp
let A := hx.1
simp at A
let B := hx.2
simp at B
calc dist x z₀
_ = √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) := by exact Complex.dist_eq_re_im x z₀
_ =
2024-08-05 14:18:02 +02:00
sorry
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx × Metric.ball z₀.im ry) := by
2024-08-05 14:53:26 +02:00
dsimp [rx, ry]
constructor
· rw [dist_comm]; simp; exact hε
· rw [dist_comm]; simp; exact hε
2024-08-05 14:18:02 +02:00
2024-08-05 14:53:26 +02:00
obtain ⟨εx, hεx, εy, hεy, hε⟩ := primitive_additivity h'f h'ry h'z₁
2024-08-05 14:18:02 +02:00
apply Filter.eventuallyEq_iff_exists_mem.2
use (Metric.ball z₁.re εx × Metric.ball z₁.im εy)
constructor
· apply IsOpen.mem_nhds
apply IsOpen.reProdIm
exact Metric.isOpen_ball
exact Metric.isOpen_ball
constructor
2024-08-05 14:53:26 +02:00
· simpa
· simpa
2024-08-05 14:18:02 +02:00
· intro x hx
simp
rw [← sub_zero (primitive z₀ f x), ← hε x hx]
abel
2024-08-01 12:38:33 +02:00
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
2024-08-05 13:47:20 +02:00
{f : → E}
{z₀ z : }
{R : }
2024-08-05 12:41:05 +02:00
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz : z ∈ Metric.ball z₀ R) :
2024-08-01 12:38:33 +02:00
HasDerivAt (primitive z₀ f) (f z) z := by
2024-08-05 12:41:05 +02:00
2024-08-05 13:47:20 +02:00
let A := primitive_additivity' hf hz
2024-08-05 13:41:41 +02:00
rw [Filter.EventuallyEq.hasDerivAt_iff A]
2024-08-01 12:38:33 +02:00
rw [← add_zero (f z)]
apply HasDerivAt.add
apply primitive_hasDerivAtBasepoint
2024-08-05 13:41:41 +02:00
apply hf.continuousOn.continuousAt
apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz
2024-08-01 12:38:33 +02:00
apply hasDerivAt_const
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
2024-08-05 13:41:41 +02:00
(z₀ : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
DifferentiableOn (primitive z₀ f) (Metric.ball z₀ R) := by
intro z hz
apply DifferentiableAt.differentiableWithinAt
2024-08-05 13:47:20 +02:00
exact (primitive_hasDerivAt hf hz).differentiableAt
2024-08-01 12:38:33 +02:00
theorem primitive_hasFderivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
2024-08-05 13:41:41 +02:00
(z₀ : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ).flip (f z)) z := by
intro z hz
2024-08-01 12:38:33 +02:00
rw [hasFDerivAt_iff_hasDerivAt]
simp
2024-08-05 13:47:20 +02:00
apply primitive_hasDerivAt hf hz
2024-08-01 12:38:33 +02:00
theorem primitive_hasFderivAt'
{f : }
2024-08-05 13:47:20 +02:00
{z₀ : }
{R : }
2024-08-05 13:41:41 +02:00
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul (f z)) z := by
intro z hz
2024-08-01 12:38:33 +02:00
rw [hasFDerivAt_iff_hasDerivAt]
simp
2024-08-05 13:47:20 +02:00
exact primitive_hasDerivAt hf hz
2024-08-01 12:38:33 +02:00
theorem primitive_fderiv
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
2024-08-05 13:47:20 +02:00
{z₀ : }
{R : }
2024-08-05 13:41:41 +02:00
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ).flip (f z) := by
intro z hz
2024-08-01 12:38:33 +02:00
apply HasFDerivAt.fderiv
2024-08-05 13:41:41 +02:00
exact primitive_hasFderivAt z₀ R hf z hz
2024-08-01 12:38:33 +02:00
theorem primitive_fderiv'
{f : }
2024-08-05 13:47:20 +02:00
{z₀ : }
{R : }
2024-08-05 13:41:41 +02:00
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = ContinuousLinearMap.lsmul (f z) := by
intro z hz
2024-08-01 12:38:33 +02:00
apply HasFDerivAt.fderiv
2024-08-05 13:47:20 +02:00
exact primitive_hasFderivAt' hf z hz