Update holomorphic_primitive2.lean
This commit is contained in:
parent
103fd5fb0f
commit
c376bd3c46
|
@ -393,31 +393,10 @@ theorem primitive_additivity
|
|||
|
||||
unfold primitive
|
||||
|
||||
|
||||
have integrability₁
|
||||
(a₁ a₂ b : ℝ) :
|
||||
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf.continuousOn
|
||||
|
||||
have : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
apply Continuous.continuousOn
|
||||
rw [this]
|
||||
continuity
|
||||
--
|
||||
intro w hw
|
||||
simp
|
||||
rw [Complex.dist_eq_re_im]
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
|
||||
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₀.re z₁.re
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
|
@ -432,18 +411,71 @@ theorem primitive_additivity
|
|||
apply Continuous.continuousOn
|
||||
rw [this]
|
||||
continuity
|
||||
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀ R)
|
||||
-- -- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀ R)
|
||||
intro w hw
|
||||
simp
|
||||
simp_rw [Complex.dist_of_im_eq]
|
||||
calc dist w z₀.re
|
||||
_ ≤ dist z₁.re z₀.re := by apply Real.dist_right_le_of_mem_uIcc; rwa [Set.uIcc_comm] at hw
|
||||
_ ≤ dist z₁ z₀ := by sorry
|
||||
_ < R := by simp at hz₁; assumption
|
||||
|
||||
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₁.re z.re
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf.continuousOn
|
||||
have {b : ℝ} : ((fun x => { re := x, im := b }) : ℝ → ℂ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
apply Continuous.continuousOn
|
||||
rw [this]
|
||||
continuity
|
||||
-- -- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₁.re z.re) (Metric.ball z₀ R)
|
||||
intro w hw
|
||||
simp
|
||||
simp_rw [Complex.dist_of_im_eq]
|
||||
calc dist w z₀.re
|
||||
_ ≤ dist w z₁.re + dist z₁.re z₀.re := by exact dist_triangle w z₁.re z₀.re
|
||||
_ ≤ dist z₁.re z.re + dist z₁.re z₀.re := by
|
||||
apply add_le_add_right
|
||||
apply Real.dist_le_of_mem_uIcc hw
|
||||
simp
|
||||
_ ≤ dist z₁ z + dist z₁ z₀ := by
|
||||
sorry
|
||||
_ < (R - dist z₁ z₀) + dist z₁ z₀ := by
|
||||
apply add_lt_add_right
|
||||
simp at hz
|
||||
rwa [dist_comm]
|
||||
_ = R := by simp
|
||||
rw [this]
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₀.im z₁.im
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf.continuousOn
|
||||
apply Continuous.continuousOn
|
||||
have {b : ℝ}: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
fun_prop
|
||||
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₀.im z₁.im) (Metric.ball z₀ R)
|
||||
intro w hw
|
||||
simp
|
||||
|
||||
|
||||
|
||||
sorry --apply integrability₁ f hf
|
||||
sorry --apply integrability₁ f hf
|
||||
rw [this]
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
sorry --apply integrability₂ f hf
|
||||
|
||||
sorry --apply integrability₂ f hf
|
||||
rw [this]
|
||||
simp
|
||||
|
@ -451,22 +483,16 @@ theorem primitive_additivity
|
|||
have {a b c d e f g h : E} : (a + b) + (c + d) - (e + f) - (g + h) = b + (a - g) - e - f + d - h + (c) := by
|
||||
abel
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
have H : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by
|
||||
|
||||
have H' : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by
|
||||
apply DifferentiableOn.mono hf
|
||||
intro x hx
|
||||
simp
|
||||
|
||||
let A₀ : dist x.re z₀.re ≤ dist x.re z₁.re + dist z₁.re z₀.re := by apply dist_triangle
|
||||
let A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by sorry
|
||||
exact H hx
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H'
|
||||
have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
|
||||
apply Complex.ext
|
||||
· simp
|
||||
|
|
Loading…
Reference in New Issue