working
This commit is contained in:
parent
6759baea2f
commit
c041cff4ad
@ -21,7 +21,7 @@ theorem primitive_zeroAtBasepoint
|
||||
theorem primitive_fderivAtBasepointZero
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
(hf : ContinuousAt f 0) :
|
||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
@ -253,8 +253,8 @@ theorem primitive_translation
|
||||
theorem primitive_hasDerivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Continuous f)
|
||||
(z₀ : ℂ) :
|
||||
(z₀ : ℂ)
|
||||
(hf : ContinuousAt f z₀) :
|
||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||
|
||||
let g := f ∘ fun z ↦ z + z₀
|
||||
@ -545,7 +545,7 @@ theorem primitive_additivity'
|
||||
(z₁ : ℂ)
|
||||
(hz₁ : z₁ ∈ (Metric.ball z₀ R))
|
||||
:
|
||||
∃ ε : ℝ, ∀ z ∈ (Metric.ball z₁ ε), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||
sorry
|
||||
|
||||
|
||||
@ -559,66 +559,76 @@ theorem primitive_hasDerivAt
|
||||
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||
|
||||
let A := primitive_additivity' f z₀ R hf z hz
|
||||
|
||||
|
||||
|
||||
rw [primitive_additivity' f hf z₀ z]
|
||||
rw [Filter.EventuallyEq.hasDerivAt_iff A]
|
||||
rw [← add_zero (f z)]
|
||||
apply HasDerivAt.add
|
||||
apply primitive_hasDerivAtBasepoint
|
||||
exact hf.continuous
|
||||
|
||||
apply hf.continuousOn.continuousAt
|
||||
apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz
|
||||
apply hasDerivAt_const
|
||||
|
||||
|
||||
theorem primitive_differentiable
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
Differentiable ℂ (primitive z₀ f) := by
|
||||
intro z
|
||||
exact (primitive_hasDerivAt hf z₀ z).differentiableAt
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
DifferentiableOn ℂ (primitive z₀ f) (Metric.ball z₀ R) := by
|
||||
intro z hz
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
exact (primitive_hasDerivAt f z₀ z R hf hz).differentiableAt
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ℂ ℂ).flip (f z)) z := by
|
||||
intro z
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ℂ ℂ).flip (f z)) z := by
|
||||
intro z hz
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
apply primitive_hasDerivAt f z₀ z R hf hz
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
||||
intro z
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
||||
intro z hz
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
exact primitive_hasDerivAt f z₀ z R hf hz
|
||||
|
||||
|
||||
theorem primitive_fderiv
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
||||
intro z
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
||||
intro z hz
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt hf z₀ z
|
||||
exact primitive_hasFderivAt z₀ R hf z hz
|
||||
|
||||
|
||||
theorem primitive_fderiv'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
||||
intro z
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
||||
intro z hz
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt' hf z₀ z
|
||||
exact primitive_hasFderivAt' z₀ R hf z hz
|
||||
|
Loading…
Reference in New Issue
Block a user