Working…
This commit is contained in:
parent
8a8e0769c2
commit
c44f7e2efd
@ -335,13 +335,19 @@ theorem primitive_additivity
|
||||
(f : ℂ → E)
|
||||
(z₀ : ℂ)
|
||||
(rx ry : ℝ)
|
||||
(hrx : 0 < rx)
|
||||
(hry : 0 < ry)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||
(z₁ : ℂ)
|
||||
(hz₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||
:
|
||||
∀ z ∈ Metric.ball z₁ (R - dist z₁ z₀), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
∃ εx εy : ℝ, ∀ z ∈ (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
|
||||
use rx - dist z₀.re z₁.re
|
||||
use ry - dist z₀.im z₁.im
|
||||
intro z hz
|
||||
|
||||
/-
|
||||
have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by
|
||||
intro x hx
|
||||
|
||||
@ -383,7 +389,7 @@ theorem primitive_additivity
|
||||
_ < (R - dist z₁ z₀) + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_lt_add_right A₃
|
||||
_ ≤ (R - dist z₁ z₀) + dist z₁ z₀ := by exact (add_le_add_iff_left (R - dist z₁ z₀)).mpr B₁
|
||||
_ = R := by exact sub_add_cancel R (dist z₁ z₀)
|
||||
|
||||
-/
|
||||
|
||||
unfold primitive
|
||||
|
||||
@ -405,14 +411,16 @@ theorem primitive_additivity
|
||||
apply Continuous.continuousOn
|
||||
rw [this]
|
||||
continuity
|
||||
-- -- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀ R)
|
||||
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₀.re z₁.re) (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)
|
||||
intro w hw
|
||||
simp
|
||||
simp_rw [Complex.dist_of_im_eq]
|
||||
calc dist w z₀.re
|
||||
apply Complex.mem_reProdIm.mpr
|
||||
constructor
|
||||
· simp
|
||||
calc dist w z₀.re
|
||||
_ ≤ dist z₁.re z₀.re := by apply Real.dist_right_le_of_mem_uIcc; rwa [Set.uIcc_comm] at hw
|
||||
_ ≤ dist z₁ z₀ := by sorry
|
||||
_ < R := by simp at hz₁; assumption
|
||||
_ < rx := by apply Metric.mem_ball.mp (Complex.mem_reProdIm.1 hz₁).1
|
||||
· simpa
|
||||
|
||||
-- IntervalIntegrable (fun x => f { re := x, im := z₀.im }) MeasureTheory.volume z₁.re z.re
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
@ -428,27 +436,29 @@ theorem primitive_additivity
|
||||
apply Continuous.continuousOn
|
||||
rw [this]
|
||||
continuity
|
||||
-- -- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₁.re z.re) (Metric.ball z₀ R)
|
||||
-- Remains: Set.MapsTo (fun x => { re := x, im := z₀.im }) (Set.uIcc z₁.re z.re) (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)
|
||||
intro w hw
|
||||
simp
|
||||
simp_rw [Complex.dist_of_im_eq]
|
||||
calc dist w z₀.re
|
||||
constructor
|
||||
· simp
|
||||
calc dist w z₀.re
|
||||
_ ≤ dist w z₁.re + dist z₁.re z₀.re := by exact dist_triangle w z₁.re z₀.re
|
||||
_ ≤ dist z₁.re z.re + dist z₁.re z₀.re := by
|
||||
apply add_le_add_right
|
||||
apply Real.dist_le_of_mem_uIcc hw
|
||||
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by
|
||||
apply (add_le_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
rw [Set.uIcc_comm] at hw
|
||||
exact Real.dist_right_le_of_mem_uIcc hw
|
||||
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
|
||||
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
|
||||
_ = rx := by
|
||||
rw [dist_comm]
|
||||
simp
|
||||
_ ≤ dist z₁ z + dist z₁ z₀ := by
|
||||
sorry
|
||||
_ < (R - dist z₁ z₀) + dist z₁ z₀ := by
|
||||
apply add_lt_add_right
|
||||
simp at hz
|
||||
rwa [dist_comm]
|
||||
_ = R := by simp
|
||||
· simpa
|
||||
rw [this]
|
||||
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
|
||||
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₀.im z₁.im
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
@ -464,15 +474,67 @@ theorem primitive_additivity
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
fun_prop
|
||||
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₀.im z₁.im) (Metric.ball z₀ R)
|
||||
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₀.im z₁.im) (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)
|
||||
intro w hw
|
||||
simp
|
||||
constructor
|
||||
· simp
|
||||
calc dist z.re z₀.re
|
||||
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
|
||||
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
|
||||
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
|
||||
_ = rx := by
|
||||
rw [dist_comm]
|
||||
simp
|
||||
· simp
|
||||
calc dist w z₀.im
|
||||
_ ≤ dist z₁.im z₀.im := by rw [Set.uIcc_comm] at hw; exact Real.dist_right_le_of_mem_uIcc hw
|
||||
_ < ry := by
|
||||
rw [← Metric.mem_ball]
|
||||
exact hz₁.2
|
||||
|
||||
|
||||
sorry --apply integrability₂ f hf
|
||||
|
||||
sorry --apply integrability₂ f hf
|
||||
-- IntervalIntegrable (fun x => f { re := z.re, im := x }) MeasureTheory.volume z₁.im z.im
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf.continuousOn
|
||||
apply Continuous.continuousOn
|
||||
have {b : ℝ}: (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
fun_prop
|
||||
-- Set.MapsTo (Complex.mk z.re) (Set.uIcc z₁.im z.im) (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry)
|
||||
intro w hw
|
||||
constructor
|
||||
· simp
|
||||
calc dist z.re z₀.re
|
||||
_ ≤ dist z.re z₁.re + dist z₁.re z₀.re := by exact dist_triangle z.re z₁.re z₀.re
|
||||
_ < (rx - dist z₀.re z₁.re) + dist z₁.re z₀.re := by
|
||||
apply (add_lt_add_iff_right (dist z₁.re z₀.re)).mpr
|
||||
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).1
|
||||
_ = rx := by
|
||||
rw [dist_comm]
|
||||
simp
|
||||
· simp
|
||||
calc dist w z₀.im
|
||||
_ ≤ dist w z₁.im + dist z₁.im z₀.im := by exact dist_triangle w z₁.im z₀.im
|
||||
_ ≤ dist z.im z₁.im + dist z₁.im z₀.im := by
|
||||
apply (add_le_add_iff_right (dist z₁.im z₀.im)).mpr
|
||||
rw [Set.uIcc_comm] at hw
|
||||
exact Real.dist_right_le_of_mem_uIcc hw
|
||||
_ < (ry - dist z₀.im z₁.im) + dist z₁.im z₀.im := by
|
||||
apply (add_lt_add_iff_right (dist z₁.im z₀.im)).mpr
|
||||
apply Metric.mem_ball.1 (Complex.mem_reProdIm.1 hz).2
|
||||
_ = ry := by
|
||||
rw [dist_comm]
|
||||
simp
|
||||
rw [this]
|
||||
|
||||
simp
|
||||
|
||||
have {a b c d e f g h : E} : (a + b) + (c + d) - (e + f) - (g + h) = b + (a - g) - e - f + d - h + (c) := by
|
||||
@ -483,7 +545,6 @@ theorem primitive_additivity
|
||||
have H' : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by
|
||||
apply DifferentiableOn.mono hf
|
||||
intro x hx
|
||||
simp
|
||||
exact H hx
|
||||
|
||||
|
||||
|
@ -5,7 +5,7 @@
|
||||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "0f3e143dffdc3a591662f3401ce1d7a3405227c0",
|
||||
"rev": "41bc768e2224d6c75128a877f1d6e198859b3178",
|
||||
"name": "batteries",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
@ -25,7 +25,7 @@
|
||||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "209712c78b16c795453b6da7f7adbda4589a8f21",
|
||||
"rev": "6058ab8d938c5104eace7d0fb5ac17b21cb067b1",
|
||||
"name": "aesop",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "master",
|
||||
@ -65,7 +65,7 @@
|
||||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "",
|
||||
"rev": "c96401c7496392a2200dc78c0b334df0561466dc",
|
||||
"rev": "d56e389960165aa122e7c97c098d67e4def09470",
|
||||
"name": "mathlib",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": null,
|
||||
|
Loading…
Reference in New Issue
Block a user