working
This commit is contained in:
parent
a1f96806a1
commit
78de1bd3b0
@ -1,5 +1,5 @@
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
|
||||
import Mathlib.Data.ENNReal.Basic
|
||||
|
||||
noncomputable def primitive
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||
@ -333,23 +333,24 @@ lemma integrability₂
|
||||
theorem primitive_additivity
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z₁ : ℂ) :
|
||||
(fun z ↦ (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁)) = 0 := by
|
||||
funext z
|
||||
|
||||
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
(z₁ : ℂ)
|
||||
(hz₁ : z₁ ∈ Metric.ball z₀ R) :
|
||||
∀ z ∈ Metric.ball z₁ (R - ‖z₁‖), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
intro z _
|
||||
|
||||
unfold primitive
|
||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₁ f hf
|
||||
apply integrability₁ f hf
|
||||
sorry --apply integrability₁ f hf
|
||||
sorry --apply integrability₁ f hf
|
||||
rw [this]
|
||||
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||
apply integrability₂ f hf
|
||||
apply integrability₂ f hf
|
||||
sorry --apply integrability₂ f hf
|
||||
sorry --apply integrability₂ f hf
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
@ -358,7 +359,14 @@ theorem primitive_additivity
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ (hf.differentiableOn)
|
||||
have H : DifferentiableOn ℂ f (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) := by
|
||||
apply DifferentiableOn.mono hf
|
||||
intro x hx
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
let A := Complex.integral_boundary_rect_eq_zero_of_differentiableOn f ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩ H
|
||||
have {x : ℝ} {w : ℂ} : ↑x + w.im * Complex.I = { re := x, im := w.im } := by
|
||||
apply Complex.ext
|
||||
· simp
|
||||
|
Loading…
Reference in New Issue
Block a user