This commit is contained in:
Stefan Kebekus 2024-08-05 13:47:20 +02:00
parent c041cff4ad
commit 854b7ef492

View File

@ -538,12 +538,11 @@ theorem primitive_additivity
theorem primitive_additivity'
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ : )
(R : )
{f : → E}
{z₀ z₁ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
(z₁ : )
(hz₁ : z₁ ∈ (Metric.ball z₀ R))
(hz₁ : z₁ ∈ Metric.ball z₀ R)
:
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
sorry
@ -551,14 +550,14 @@ theorem primitive_additivity'
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ z : )
(R : )
{f : → E}
{z₀ z : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz : z ∈ Metric.ball z₀ R) :
HasDerivAt (primitive z₀ f) (f z) z := by
let A := primitive_additivity' f z₀ R hf z hz
let A := primitive_additivity' hf hz
rw [Filter.EventuallyEq.hasDerivAt_iff A]
rw [← add_zero (f z)]
apply HasDerivAt.add
@ -579,7 +578,7 @@ theorem primitive_differentiable
DifferentiableOn (primitive z₀ f) (Metric.ball z₀ R) := by
intro z hz
apply DifferentiableAt.differentiableWithinAt
exact (primitive_hasDerivAt f z₀ z R hf hz).differentiableAt
exact (primitive_hasDerivAt hf hz).differentiableAt
theorem primitive_hasFderivAt
@ -593,27 +592,27 @@ theorem primitive_hasFderivAt
intro z hz
rw [hasFDerivAt_iff_hasDerivAt]
simp
apply primitive_hasDerivAt f z₀ z R hf hz
apply primitive_hasDerivAt hf hz
theorem primitive_hasFderivAt'
{f : }
(z₀ : )
(R : )
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul (f z)) z := by
intro z hz
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt f z₀ z R hf hz
exact primitive_hasDerivAt hf hz
theorem primitive_fderiv
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(z₀ : )
(R : )
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ).flip (f z) := by
@ -624,11 +623,11 @@ theorem primitive_fderiv
theorem primitive_fderiv'
{f : }
(z₀ : )
(R : )
{z₀ : }
{R : }
(hf : DifferentiableOn f (Metric.ball z₀ R))
:
∀ z ∈ Metric.ball z₀ R, (fderiv (primitive z₀ f) z) = ContinuousLinearMap.lsmul (f z) := by
intro z hz
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt' z₀ R hf z hz
exact primitive_hasFderivAt' hf z hz