nevanlinna/Nevanlinna/stronglyMeromorphicOn.lean

164 lines
4.5 KiB
Plaintext
Raw Normal View History

2024-10-24 14:05:16 +02:00
import Nevanlinna.stronglyMeromorphicAt
2024-11-20 16:08:59 +01:00
import Mathlib.Algebra.BigOperators.Finprod
2024-10-24 14:05:16 +02:00
open Topology
2024-12-11 12:36:44 +01:00
theorem MeromorphicOn.analyticOnCodiscreteWithin
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
{ x | AnalyticAt f x } ∈ Filter.codiscreteWithin U := by
rw [mem_codiscreteWithin]
intro x hx
simp
rw [← Filter.eventually_mem_set]
apply Filter.Eventually.mono (hf x hx).eventually_analyticAt
simp
tauto
2024-10-24 14:05:16 +02:00
/- Strongly MeromorphicOn -/
def StronglyMeromorphicOn
(f : )
(U : Set ) :=
∀ z ∈ U, StronglyMeromorphicAt f z
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicOn.meromorphicOn
{f : }
{U : Set }
(hf : StronglyMeromorphicOn f U) :
MeromorphicOn f U := by
intro z hz
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analytic
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
2024-11-28 18:57:43 +01:00
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
AnalyticOnNhd f U := by
2024-10-24 14:05:16 +02:00
intro z hz
apply StronglyMeromorphicAt.analytic
exact h₂f z hz
exact h₁f z hz
/- Analytic functions are strongly meromorphic -/
theorem AnalyticOn.stronglyMeromorphicOn
{f : }
{U : Set }
2024-10-24 14:37:27 +02:00
(h₁f : AnalyticOnNhd f U) :
2024-10-24 14:05:16 +02:00
StronglyMeromorphicOn f U := by
intro z hz
apply AnalyticAt.stronglyMeromorphicAt
exact h₁f z hz
2024-11-29 13:24:20 +01:00
theorem stronglyMeromorphicOn_of_mul_analytic'
{f g : }
{U : Set }
(h₁g : AnalyticOnNhd g U)
(h₂g : ∀ u : U, g u ≠ 0)
(h₁f : StronglyMeromorphicOn f U) :
StronglyMeromorphicOn (g * f) U := by
intro z hz
rw [mul_comm]
apply (stronglyMeromorphicAt_of_mul_analytic (h₁g z hz) ?h₂g).mp (h₁f z hz)
exact h₂g ⟨z, hz⟩
2024-11-26 20:04:58 +01:00
/- Make strongly MeromorphicOn -/
2024-10-24 14:37:27 +02:00
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
2024-10-24 14:05:16 +02:00
{f : }
2024-10-24 14:37:27 +02:00
{U : Set }
(hf : MeromorphicOn f U) :
2024-10-24 14:05:16 +02:00
:= by
intro z
2024-10-24 14:37:27 +02:00
by_cases hz : z ∈ U
· exact (hf z hz).makeStronglyMeromorphicAt z
2024-10-24 14:05:16 +02:00
· exact f z
2024-10-30 16:53:32 +01:00
theorem makeStronglyMeromorphicOn_changeDiscrete
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
apply Filter.eventually_iff_exists_mem.2
let A := (hf z₀ hz₀).eventually_analyticAt
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
use V
constructor
· assumption
· intro v hv
unfold MeromorphicOn.makeStronglyMeromorphicOn
by_cases h₂v : v ∈ U
· simp [h₂v]
2024-11-19 11:31:24 +01:00
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id]
2024-10-30 16:53:32 +01:00
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
· simp [h₂v]
2024-11-26 20:04:58 +01:00
theorem makeStronglyMeromorphicOn_changeDiscrete'
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
apply Mnhds
· apply Filter.EventuallyEq.trans (makeStronglyMeromorphicOn_changeDiscrete hf hz₀)
exact m₂ (hf z₀ hz₀)
· rw [MeromorphicOn.makeStronglyMeromorphicOn]
simp [hz₀]
2024-12-11 12:36:44 +01:00
theorem makeStronglyMeromorphicOn_changeDiscrete''
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
f =ᶠ[Filter.codiscreteWithin U] hf.makeStronglyMeromorphicOn := by
rw [Filter.eventuallyEq_iff_exists_mem]
use { x | AnalyticAt f x }
constructor
· exact MeromorphicOn.analyticOnCodiscreteWithin hf
· intro x hx
simp at hx
rw [MeromorphicOn.makeStronglyMeromorphicOn]
by_cases h₁x : x ∈ U
· simp [h₁x]
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id hx.stronglyMeromorphicAt]
· simp [h₁x]
2024-11-26 20:04:58 +01:00
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
intro z hz
let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz
rw [stronglyMeromorphicAt_congr A]
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz)
2024-11-29 07:09:01 +01:00
theorem makeStronglyMeromorphicOn_changeOrder
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
(stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf z₀ hz₀).meromorphicAt.order = (hf z₀ hz₀).order := by
apply MeromorphicAt.order_congr
exact makeStronglyMeromorphicOn_changeDiscrete hf hz₀