Update stronglyMeromorphicOn.lean

This commit is contained in:
Stefan Kebekus 2024-11-20 16:08:59 +01:00
parent 6294e3c4ea
commit b038a5f47f

View File

@ -1,5 +1,5 @@
import Nevanlinna.stronglyMeromorphicAt
import Mathlib.Algebra.BigOperators.Finprod
open Topology
@ -79,12 +79,77 @@ theorem makeStronglyMeromorphicOn_changeDiscrete
· simp [h₂v]
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic
{f : }
(hf : MeromorphicOn f U) :
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
theorem stronglyMeromorphicOn_ratlPolynomial
{U : Set }
(d : ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite
· rw [finprod_eq_prod _ hd]
intro z h₁z
by_cases h₂z : d z = 0
· apply AnalyticAt.stronglyMeromorphicAt
rw [Finset.prod_fn]
apply Finset.analyticAt_prod
intro u hu
by_cases huz : u = z
· rw [← huz] at h₂z
rw [h₂z]
simp
exact analyticAt_const
· apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
rwa [sub_ne_zero, ne_comm]
· have : z ∈ hd.toFinset := by
simp
by_contra hCon
have A : 0 ≠ (1 : ) z := by simp
rw [← hCon] at A
simp only [sub_self] at A
rw [ne_comm] at A
rw [zpow_ne_zero_iff] at A
tauto
exact h₂z
rw [← Finset.mul_prod_erase hd.toFinset _ this]
right
use d z
use ∏ x ∈ hd.toFinset.erase z, fun z => (z - x) ^ d x
constructor
· rw [Finset.prod_fn]
apply Finset.analyticAt_prod
intro u hu
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
rw [sub_ne_zero, ne_comm]
by_contra hCon
simp at hu
tauto
· constructor
· simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro u hu
rw [zpow_ne_zero_iff]
rw [sub_ne_zero]
by_contra hCon
rw [hCon] at hu
let A := Finset.not_mem_erase u hd.toFinset
tauto
--
have : u ∈ hd.toFinset := by
exact Finset.mem_of_mem_erase hu
simp at this
by_contra hCon
rw [hCon] at this
simp at this
tauto
· exact Filter.Eventually.of_forall (congrFun rfl)
sorry
· rw [finprod_of_infinite_mulSupport hd]
apply AnalyticOn.stronglyMeromorphicOn
apply analyticOnNhd_const
theorem makeStronglyMeromorphicOn_changeDiscrete'