Working…
This commit is contained in:
parent
c7a3804b0c
commit
ee7f20c593
33
Nevanlinna/meromorphicOn_integrability.lean
Normal file
33
Nevanlinna/meromorphicOn_integrability.lean
Normal file
@ -0,0 +1,33 @@
|
||||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Nevanlinna.analyticAt
|
||||
import Nevanlinna.divisor
|
||||
import Nevanlinna.meromorphicAt
|
||||
import Nevanlinna.meromorphicOn_divisor
|
||||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.mathlibAddOn
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
|
||||
theorem integrability_congr_changeDiscrete
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{r : ℝ}
|
||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
||||
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||
intro hf₁
|
||||
|
||||
apply IntervalIntegrable.congr hf₁
|
||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
||||
constructor
|
||||
· apply Set.Countable.measure_zero
|
||||
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
||||
exact rfl
|
||||
rw [this]
|
||||
apply Set.Countable.preimage_circleMap
|
||||
sorry
|
||||
sorry
|
||||
· sorry
|
@ -4,6 +4,22 @@ import Mathlib.Algebra.BigOperators.Finprod
|
||||
open Topology
|
||||
|
||||
|
||||
|
||||
theorem MeromorphicOn.analyticOnCodiscreteWithin
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : MeromorphicOn f U) :
|
||||
{ x | AnalyticAt ℂ f x } ∈ Filter.codiscreteWithin U := by
|
||||
|
||||
rw [mem_codiscreteWithin]
|
||||
intro x hx
|
||||
simp
|
||||
rw [← Filter.eventually_mem_set]
|
||||
apply Filter.Eventually.mono (hf x hx).eventually_analyticAt
|
||||
simp
|
||||
tauto
|
||||
|
||||
|
||||
/- Strongly MeromorphicOn -/
|
||||
def StronglyMeromorphicOn
|
||||
(f : ℂ → ℂ)
|
||||
@ -106,6 +122,25 @@ theorem makeStronglyMeromorphicOn_changeDiscrete'
|
||||
simp [hz₀]
|
||||
|
||||
|
||||
theorem makeStronglyMeromorphicOn_changeDiscrete''
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : MeromorphicOn f U) :
|
||||
f =ᶠ[Filter.codiscreteWithin U] hf.makeStronglyMeromorphicOn := by
|
||||
|
||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||
use { x | AnalyticAt ℂ f x }
|
||||
constructor
|
||||
· exact MeromorphicOn.analyticOnCodiscreteWithin hf
|
||||
· intro x hx
|
||||
simp at hx
|
||||
rw [MeromorphicOn.makeStronglyMeromorphicOn]
|
||||
by_cases h₁x : x ∈ U
|
||||
· simp [h₁x]
|
||||
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id hx.stronglyMeromorphicAt]
|
||||
· simp [h₁x]
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
|
Loading…
Reference in New Issue
Block a user