2024-10-24 14:05:16 +02:00
|
|
|
|
import Nevanlinna.stronglyMeromorphicAt
|
2024-11-20 16:08:59 +01:00
|
|
|
|
import Mathlib.Algebra.BigOperators.Finprod
|
2024-10-24 14:05:16 +02:00
|
|
|
|
|
|
|
|
|
open Topology
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Strongly MeromorphicOn -/
|
|
|
|
|
def StronglyMeromorphicOn
|
|
|
|
|
(f : ℂ → ℂ)
|
|
|
|
|
(U : Set ℂ) :=
|
|
|
|
|
∀ z ∈ U, StronglyMeromorphicAt f z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Strongly MeromorphicAt is Meromorphic -/
|
|
|
|
|
theorem StronglyMeromorphicOn.meromorphicOn
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(hf : StronglyMeromorphicOn f U) :
|
|
|
|
|
MeromorphicOn f U := by
|
|
|
|
|
intro z hz
|
|
|
|
|
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
|
|
|
|
theorem StronglyMeromorphicOn.analytic
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(h₁f : StronglyMeromorphicOn f U)
|
2024-11-28 18:57:43 +01:00
|
|
|
|
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
|
|
|
|
|
AnalyticOnNhd ℂ f U := by
|
2024-10-24 14:05:16 +02:00
|
|
|
|
intro z hz
|
|
|
|
|
apply StronglyMeromorphicAt.analytic
|
|
|
|
|
exact h₂f z hz
|
|
|
|
|
exact h₁f z hz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Analytic functions are strongly meromorphic -/
|
|
|
|
|
theorem AnalyticOn.stronglyMeromorphicOn
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
2024-10-24 14:37:27 +02:00
|
|
|
|
(h₁f : AnalyticOnNhd ℂ f U) :
|
2024-10-24 14:05:16 +02:00
|
|
|
|
StronglyMeromorphicOn f U := by
|
|
|
|
|
intro z hz
|
|
|
|
|
apply AnalyticAt.stronglyMeromorphicAt
|
|
|
|
|
exact h₁f z hz
|
|
|
|
|
|
|
|
|
|
|
2024-11-26 20:04:58 +01:00
|
|
|
|
/- Make strongly MeromorphicOn -/
|
2024-10-24 14:37:27 +02:00
|
|
|
|
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
2024-10-24 14:05:16 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
2024-10-24 14:37:27 +02:00
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(hf : MeromorphicOn f U) :
|
2024-10-24 14:05:16 +02:00
|
|
|
|
ℂ → ℂ := by
|
|
|
|
|
intro z
|
2024-10-24 14:37:27 +02:00
|
|
|
|
by_cases hz : z ∈ U
|
|
|
|
|
· exact (hf z hz).makeStronglyMeromorphicAt z
|
2024-10-24 14:05:16 +02:00
|
|
|
|
· exact f z
|
|
|
|
|
|
|
|
|
|
|
2024-10-30 16:53:32 +01:00
|
|
|
|
theorem makeStronglyMeromorphicOn_changeDiscrete
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicOn f U)
|
|
|
|
|
(hz₀ : z₀ ∈ U) :
|
|
|
|
|
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
|
|
|
|
|
apply Filter.eventually_iff_exists_mem.2
|
|
|
|
|
let A := (hf z₀ hz₀).eventually_analyticAt
|
|
|
|
|
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
|
|
|
|
|
use V
|
|
|
|
|
constructor
|
|
|
|
|
· assumption
|
|
|
|
|
· intro v hv
|
|
|
|
|
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
|
|
|
|
by_cases h₂v : v ∈ U
|
|
|
|
|
· simp [h₂v]
|
2024-11-19 11:31:24 +01:00
|
|
|
|
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id]
|
2024-10-30 16:53:32 +01:00
|
|
|
|
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
|
|
|
|
|
· simp [h₂v]
|
2024-11-26 20:04:58 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicOn f U)
|
|
|
|
|
(hz₀ : z₀ ∈ U) :
|
|
|
|
|
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
|
|
|
|
|
apply Mnhds
|
|
|
|
|
· apply Filter.EventuallyEq.trans (makeStronglyMeromorphicOn_changeDiscrete hf hz₀)
|
|
|
|
|
exact m₂ (hf z₀ hz₀)
|
|
|
|
|
· rw [MeromorphicOn.makeStronglyMeromorphicOn]
|
|
|
|
|
simp [hz₀]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(hf : MeromorphicOn f U) :
|
|
|
|
|
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
|
|
|
|
intro z hz
|
|
|
|
|
let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz
|
|
|
|
|
rw [stronglyMeromorphicAt_congr A]
|
|
|
|
|
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz)
|