Update stronglyMeromorphicOn.lean

This commit is contained in:
Stefan Kebekus 2024-10-24 14:37:27 +02:00
parent ccdbb319f7
commit 306ed1b083

View File

@ -38,138 +38,28 @@ theorem StronglyMeromorphicOn.analytic
theorem AnalyticOn.stronglyMeromorphicOn
{f : }
{U : Set }
(h₁f : AnalyticOn f U) :
(h₁f : AnalyticOnNhd f U) :
StronglyMeromorphicOn f U := by
intro z hz
apply AnalyticAt.stronglyMeromorphicAt
let A := h₁f z hz
exact h₁f z hz
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
{U : Set }
(hf : MeromorphicOn f U) :
:= by
intro z
by_cases z = z₀
· by_cases h₁f : hf.order = (0 : )
· rw [hf.order_eq_int_iff] at h₁f
exact (Classical.choose h₁f) z₀
· exact 0
by_cases hz : z ∈ U
· exact (hf z hz).makeStronglyMeromorphicAt z
· exact f z
lemma m₁
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
intro z hz
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [hz]
lemma m₂
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
apply eventually_nhdsWithin_of_forall
exact fun x a => m₁ hf x a
lemma Mnhds
{f g : }
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t
theorem localIdentity
{f g : }
{z₀ : }
(hf : AnalyticAt f z₀)
(hg : AnalyticAt g z₀) :
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
intro h
let Δ := f - g
have : AnalyticAt Δ z₀ := AnalyticAt.sub hf hg
have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by
exact Filter.eventuallyEq_iff_sub.mp h
have : Δ =ᶠ[𝓝 z₀] 0 := by
rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h
· exact h
· have := Filter.EventuallyEq.eventually t₁
let A := Filter.eventually_and.2 ⟨this, h⟩
let _ := Filter.Eventually.exists A
tauto
exact Filter.eventuallyEq_iff_sub.mpr this
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
by_cases h₂f : hf.order =
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
apply Mnhds
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [h₂f]
apply AnalyticAt.stronglyMeromorphicAt
rw [analyticAt_congr this]
apply analyticAt_const
· let n := hf.order.untop h₂f
have : hf.order = n := by
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
rw [hf.order_eq_int_iff] at this
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
right
use n
use g
constructor
· assumption
· constructor
· assumption
· apply Mnhds
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact h₃g
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp
by_cases h₃f : hf.order = (0 : )
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
simp [h₃f]
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
simp at h₃G
have hn : n = 0 := Eq.symm ((fun {α} {a} {b} h => (WithTop.eq_untop_iff h).mpr) h₂f (id (Eq.symm h₃f)))
rw [hn]
rw [hn] at h₃g; simp at h₃g
simp
have : g =ᶠ[𝓝 z₀] (Classical.choose h₄f) := by
apply localIdentity h₁g h₁G
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₃g) h₃G
rw [Filter.EventuallyEq.eq_of_nhds this]
· have : hf.order ≠ 0 := h₃f
simp [this]
left
apply zero_zpow n
dsimp [n]
rwa [WithTop.untop_eq_iff h₂f]
{U : Set }
(hf : MeromorphicOn f U) :
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
sorry