nevanlinna/Nevanlinna/stronglyMeromorphicOn_elimi...

346 lines
10 KiB
Plaintext
Raw Normal View History

2024-11-07 12:08:52 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
2024-11-20 08:12:12 +01:00
import Mathlib.Data.Set.Finite
2024-11-07 12:08:52 +01:00
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
2024-11-19 16:33:33 +01:00
import Nevanlinna.meromorphicOn
2024-11-07 12:08:52 +01:00
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
2024-11-12 16:49:07 +01:00
import Nevanlinna.mathlibAddOn
2024-11-07 12:08:52 +01:00
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-11-19 07:16:04 +01:00
theorem MeromorphicOn.decompose₁
{f : }
{U : Set }
{z₀ : }
(h₁f : MeromorphicOn f U)
2024-11-19 10:07:20 +01:00
(h₂f : StronglyMeromorphicAt f z₀)
2024-11-19 13:20:19 +01:00
(h₃f : h₂f.meromorphicAt.order ≠ )
(hz₀ : z₀ ∈ U) :
2024-11-19 07:16:04 +01:00
∃ g : , (MeromorphicOn g U)
∧ (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
have h₁h₁ : MeromorphicOn h₁ U := by
apply MeromorphicOn.zpow
apply AnalyticOnNhd.meromorphicOn
apply AnalyticOnNhd.sub
exact analyticOnNhd_id
exact analyticOnNhd_const
2024-11-19 08:45:20 +01:00
let n : := (-h₁f.divisor z₀)
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
intro z hz
simp
2024-11-19 07:16:04 +01:00
let g₁ := f * h₁
have h₁g₁ : MeromorphicOn g₁ U := by
apply h₁f.mul h₁h₁
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
2024-11-19 10:07:20 +01:00
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
rw [h₂h₁]
unfold n
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
conv =>
left
left
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
have
(a b c : )
(h : a + b = c) :
(a : WithTop ) + (b : WithTop ) = (c : WithTop ) := by
rw [← h]
simp
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
simp
ring
2024-11-19 07:16:04 +01:00
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
have h₂g : StronglyMeromorphicAt g z₀ := by
2024-11-19 10:07:20 +01:00
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
have h₁g : MeromorphicOn g U := by
intro z hz
by_cases h₁z : z = z₀
· rw [h₁z]
apply h₂g.meromorphicAt
· apply (h₁g₁ z hz).congr
rw [eventuallyEq_nhdsWithin_iff]
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y h₁y h₂y
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
unfold g
rw [← A]
· constructor
· exact isOpen_compl_singleton
· exact h₁z
2024-11-19 11:31:24 +01:00
have h₃g : (h₁g z₀ hz₀).order = 0 := by
unfold g
let B := m₂ (h₁g₁ z₀ hz₀)
let A := (h₁g₁ z₀ hz₀).order_congr B
rw [← A]
rw [h₂g₁]
have h₄g : AnalyticAt g z₀ := by
apply h₂g.analytic
rw [h₃g]
2024-11-19 10:07:20 +01:00
2024-11-19 07:16:04 +01:00
use g
constructor
· exact h₁g
· constructor
2024-11-19 11:31:24 +01:00
· exact h₄g
2024-11-19 07:16:04 +01:00
· constructor
2024-11-19 11:31:24 +01:00
· exact (h₂g.order_eq_zero_iff).mp h₃g
· funext z
by_cases hz : z = z₀
· rw [hz]
simp
by_cases h : h₁f.divisor z₀ = 0
· simp [h]
have h₂h₁ : h₁ = 1 := by
funext w
unfold h₁
simp [h]
have h₃g₁ : g₁ = f := by
unfold g₁
rw [h₂h₁]
simp
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
rwa [h₃g₁]
let A := h₄g₁.makeStronglyMeromorphic_id
unfold g
rw [← A, h₃g₁]
· have : (0 : ) ^ h₁f.divisor z₀ = (0 : ) := by
exact zero_zpow (h₁f.divisor z₀) h
rw [this]
simp
let A := h₂f.order_eq_zero_iff.not
simp at A
rw [← A]
unfold MeromorphicOn.divisor at h
simp [hz₀] at h
exact h.1
· simp
let B := m₁ (h₁g₁ z₀ hz₀) z hz
unfold g
rw [← B]
unfold g₁ h₁
simp [hz]
rw [mul_assoc]
rw [inv_mul_cancel₀]
simp
apply zpow_ne_zero
rwa [sub_ne_zero]
theorem MeromorphicOn.decompose₂
{f : }
{U : Set }
2024-11-19 13:20:19 +01:00
{P : Finset U}
(hf : StronglyMeromorphicOn f U) :
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
apply Finset.induction (p := fun (P : Finset U) ↦
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
-- case empty
simp
exact hf.meromorphicOn
-- case insert
intro u P hu iHyp
intro hOrder
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
2024-11-19 15:54:28 +01:00
have h₀ : AnalyticAt (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
funext w
simp
rw [this]
apply Finset.analyticAt_prod
intro p hp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
2024-11-19 15:54:28 +01:00
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro p hp
apply zpow_ne_zero
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
2024-11-19 15:54:28 +01:00
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
rw [← h₄g₀]
exact hf u u.2
2024-11-19 13:20:19 +01:00
have h₆g₀ : (h₁g₀ u u.2).order ≠ := by
2024-11-19 15:54:28 +01:00
by_contra hCon
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
simp_rw [← h₄g₀, hCon] at A
simp at A
let B := hOrder u (Finset.mem_insert_self u P)
tauto
2024-11-19 13:20:19 +01:00
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
use g
· constructor
· exact h₁g
· constructor
2024-11-19 15:54:28 +01:00
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· let A := h₂g₀ ⟨v₁, hv⟩
rw [h₄g] at A
rw [← analyticAt_of_mul_analytic] at A
simp at A
exact A
--
simp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
--
apply zpow_ne_zero
simp
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
2024-11-19 13:20:19 +01:00
· constructor
2024-11-19 15:54:28 +01:00
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· by_contra hCon
let A := h₃g₀ ⟨v₁,hv⟩
rw [h₄g] at A
simp at A
tauto
· conv =>
left
rw [h₄g₀, h₄g]
simp
rw [mul_assoc]
congr
rw [Finset.prod_insert]
simp
congr
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact Eq.eventuallyEq h₄g₀
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
rw [C]
let D := h₀.order_eq_zero_iff.2 h₁
let E := h₀.meromorphicAt_order
rw [E, D]
simp
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
unfold MeromorphicOn.divisor
simp
rw [this]
rw [this]
--
simpa
2024-11-19 16:33:33 +01:00
theorem MeromorphicOn.decompose₃
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticOn g U)
∧ (∀ u : U, g u ≠ 0)
2024-11-21 17:15:32 +01:00
∧ (f = g * ∏ᶠ u, fun z ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) := by
2024-11-19 16:33:33 +01:00
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by
2024-11-21 17:15:32 +01:00
apply MeromorphicOn.order_ne_top h₂U h₁f h₂f
2024-11-19 16:33:33 +01:00
2024-11-20 08:12:12 +01:00
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
2024-11-19 16:33:33 +01:00
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
2024-11-20 08:12:12 +01:00
let P := (h₄f.preimage Set.injOn_subtype_val : Set.Finite P').toFinset
have hP : ∀ p ∈ P, (h₁f p p.2).meromorphicAt.order ≠ := by
intro p hp
apply h₃f
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP
2024-11-21 17:15:32 +01:00
let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1
2024-11-21 17:15:32 +01:00
have h₂h : StronglyMeromorphicOn h U := by
unfold h
apply stronglyMeromorphicOn_ratlPolynomial₂
have h₁h : MeromorphicOn h U := by
2024-11-21 17:15:32 +01:00
exact StronglyMeromorphicOn.meromorphicOn h₂h
2024-11-20 08:12:12 +01:00
have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by
2024-11-19 16:33:33 +01:00
sorry
2024-11-20 08:12:12 +01:00
use g
constructor
· exact h₁g
· constructor
· sorry
· constructor
· sorry
· conv =>
left
rw [h₄g]
congr
simp
sorry