Working…

This commit is contained in:
Stefan Kebekus 2024-11-20 08:12:12 +01:00
parent 25d0e2086a
commit f65785b62b
2 changed files with 47 additions and 7 deletions

View File

@ -100,3 +100,23 @@ theorem MeromorphicOn.divisor_def₂
rw [WithTop.untop'_eq_iff]
left
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
theorem MeromorphicOn.divisor_mul
{f₁ f₂ : }
{U : Set }
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
funext z
by_cases hz : z ∈ U
· simp [hz]
rw [MeromorphicOn.divisor_def₂ h₁f₁ hz (h₂f₁ z hz)]
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz (h₂f₂ z hz)]
let A := MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)
sorry
· unfold MeromorphicOn.divisor
simp [hz]

View File

@ -1,4 +1,5 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Data.Set.Finite
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
@ -325,16 +326,35 @@ theorem MeromorphicOn.decompose₃
rw [A] at this
tauto
have h₄f : Finite (Function.support h₁f.meromorphicOn.divisor) := by
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
have : Finite P' := by
unfold P'
refine Finite.of_injective ?f ?H
simp
apply Finite.of_injective
let P := (h₄f.preimage Set.injOn_subtype_val : Set.Finite P').toFinset
have hP : ∀ p ∈ P, (h₁f p p.2).meromorphicAt.order ≠ := by
intro p hp
apply h₃f
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP
let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1
have h₁h : MeromorphicOn h U := by
sorry
have h₂h : StronglyMeromorphicOn h U := by
sorry
have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by
sorry
sorry
use g
constructor
· exact h₁g
· constructor
· sorry
· constructor
· sorry
· conv =>
left
rw [h₄g]
congr
simp
sorry