2024-11-07 12:08:52 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
import Nevanlinna.meromorphicAt
|
2024-11-19 16:33:33 +01:00
|
|
|
|
import Nevanlinna.meromorphicOn
|
2024-11-07 12:08:52 +01:00
|
|
|
|
import Nevanlinna.meromorphicOn_divisor
|
|
|
|
|
import Nevanlinna.stronglyMeromorphicOn
|
2024-11-12 16:49:07 +01:00
|
|
|
|
import Nevanlinna.mathlibAddOn
|
2024-11-07 12:08:52 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
2024-11-19 07:16:04 +01:00
|
|
|
|
theorem MeromorphicOn.decompose₁
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(h₁f : MeromorphicOn f U)
|
2024-11-19 10:07:20 +01:00
|
|
|
|
(h₂f : StronglyMeromorphicAt f z₀)
|
2024-11-19 13:20:19 +01:00
|
|
|
|
(h₃f : h₂f.meromorphicAt.order ≠ ⊤)
|
|
|
|
|
(hz₀ : z₀ ∈ U) :
|
2024-11-19 07:16:04 +01:00
|
|
|
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
|
|
|
|
∧ (AnalyticAt ℂ g z₀)
|
|
|
|
|
∧ (g z₀ ≠ 0)
|
|
|
|
|
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
|
|
|
|
|
|
|
|
|
|
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
|
|
|
|
|
have h₁h₁ : MeromorphicOn h₁ U := by
|
|
|
|
|
apply MeromorphicOn.zpow
|
|
|
|
|
apply AnalyticOnNhd.meromorphicOn
|
|
|
|
|
apply AnalyticOnNhd.sub
|
|
|
|
|
exact analyticOnNhd_id
|
|
|
|
|
exact analyticOnNhd_const
|
2024-11-19 08:45:20 +01:00
|
|
|
|
let n : ℤ := (-h₁f.divisor z₀)
|
|
|
|
|
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
|
|
|
|
|
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
|
|
|
|
|
use 1
|
|
|
|
|
constructor
|
|
|
|
|
· apply analyticAt_const
|
|
|
|
|
· constructor
|
|
|
|
|
· simp
|
|
|
|
|
· apply eventually_nhdsWithin_of_forall
|
|
|
|
|
intro z hz
|
|
|
|
|
simp
|
2024-11-19 07:16:04 +01:00
|
|
|
|
|
|
|
|
|
let g₁ := f * h₁
|
|
|
|
|
have h₁g₁ : MeromorphicOn g₁ U := by
|
|
|
|
|
apply h₁f.mul h₁h₁
|
|
|
|
|
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
|
2024-11-19 10:07:20 +01:00
|
|
|
|
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
|
|
|
|
|
rw [h₂h₁]
|
|
|
|
|
unfold n
|
|
|
|
|
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
left
|
|
|
|
|
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
|
|
|
|
|
have
|
|
|
|
|
(a b c : ℤ)
|
|
|
|
|
(h : a + b = c) :
|
|
|
|
|
(a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by
|
|
|
|
|
rw [← h]
|
|
|
|
|
simp
|
|
|
|
|
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
|
|
|
|
|
simp
|
|
|
|
|
ring
|
2024-11-19 07:16:04 +01:00
|
|
|
|
|
|
|
|
|
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
|
|
|
|
|
have h₂g : StronglyMeromorphicAt g z₀ := by
|
2024-11-19 10:07:20 +01:00
|
|
|
|
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
|
|
|
|
|
have h₁g : MeromorphicOn g U := by
|
|
|
|
|
intro z hz
|
|
|
|
|
by_cases h₁z : z = z₀
|
|
|
|
|
· rw [h₁z]
|
|
|
|
|
apply h₂g.meromorphicAt
|
|
|
|
|
· apply (h₁g₁ z hz).congr
|
|
|
|
|
rw [eventuallyEq_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
use {z₀}ᶜ
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
|
|
|
|
|
unfold g
|
|
|
|
|
rw [← A]
|
|
|
|
|
· constructor
|
|
|
|
|
· exact isOpen_compl_singleton
|
|
|
|
|
· exact h₁z
|
2024-11-19 11:31:24 +01:00
|
|
|
|
have h₃g : (h₁g z₀ hz₀).order = 0 := by
|
|
|
|
|
unfold g
|
|
|
|
|
let B := m₂ (h₁g₁ z₀ hz₀)
|
|
|
|
|
let A := (h₁g₁ z₀ hz₀).order_congr B
|
|
|
|
|
rw [← A]
|
|
|
|
|
rw [h₂g₁]
|
|
|
|
|
have h₄g : AnalyticAt ℂ g z₀ := by
|
|
|
|
|
apply h₂g.analytic
|
|
|
|
|
rw [h₃g]
|
2024-11-19 10:07:20 +01:00
|
|
|
|
|
2024-11-19 07:16:04 +01:00
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
· exact h₁g
|
|
|
|
|
· constructor
|
2024-11-19 11:31:24 +01:00
|
|
|
|
· exact h₄g
|
2024-11-19 07:16:04 +01:00
|
|
|
|
· constructor
|
2024-11-19 11:31:24 +01:00
|
|
|
|
· exact (h₂g.order_eq_zero_iff).mp h₃g
|
|
|
|
|
· funext z
|
|
|
|
|
by_cases hz : z = z₀
|
|
|
|
|
· rw [hz]
|
|
|
|
|
simp
|
|
|
|
|
by_cases h : h₁f.divisor z₀ = 0
|
|
|
|
|
· simp [h]
|
|
|
|
|
have h₂h₁ : h₁ = 1 := by
|
|
|
|
|
funext w
|
|
|
|
|
unfold h₁
|
|
|
|
|
simp [h]
|
|
|
|
|
have h₃g₁ : g₁ = f := by
|
|
|
|
|
unfold g₁
|
|
|
|
|
rw [h₂h₁]
|
|
|
|
|
simp
|
|
|
|
|
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
|
|
|
|
|
rwa [h₃g₁]
|
|
|
|
|
let A := h₄g₁.makeStronglyMeromorphic_id
|
|
|
|
|
unfold g
|
|
|
|
|
rw [← A, h₃g₁]
|
|
|
|
|
· have : (0 : ℂ) ^ h₁f.divisor z₀ = (0 : ℂ) := by
|
|
|
|
|
exact zero_zpow (h₁f.divisor z₀) h
|
|
|
|
|
rw [this]
|
|
|
|
|
simp
|
|
|
|
|
let A := h₂f.order_eq_zero_iff.not
|
|
|
|
|
simp at A
|
|
|
|
|
rw [← A]
|
|
|
|
|
unfold MeromorphicOn.divisor at h
|
|
|
|
|
simp [hz₀] at h
|
|
|
|
|
exact h.1
|
|
|
|
|
· simp
|
|
|
|
|
let B := m₁ (h₁g₁ z₀ hz₀) z hz
|
|
|
|
|
unfold g
|
|
|
|
|
rw [← B]
|
|
|
|
|
unfold g₁ h₁
|
|
|
|
|
simp [hz]
|
|
|
|
|
rw [mul_assoc]
|
|
|
|
|
rw [inv_mul_cancel₀]
|
|
|
|
|
simp
|
|
|
|
|
apply zpow_ne_zero
|
|
|
|
|
rwa [sub_ne_zero]
|
2024-11-19 12:06:03 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeromorphicOn.decompose₂
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
2024-11-19 13:20:19 +01:00
|
|
|
|
{P : Finset U}
|
|
|
|
|
(hf : StronglyMeromorphicOn f U) :
|
|
|
|
|
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
|
|
|
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
|
|
|
|
∧ (∀ p : P, AnalyticAt ℂ g p)
|
|
|
|
|
∧ (∀ p : P, g p ≠ 0)
|
|
|
|
|
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
|
|
|
|
|
|
|
|
|
apply Finset.induction (p := fun (P : Finset U) ↦
|
|
|
|
|
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
|
|
|
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
|
|
|
|
∧ (∀ p : P, AnalyticAt ℂ g p)
|
|
|
|
|
∧ (∀ p : P, g p ≠ 0)
|
|
|
|
|
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
|
|
|
|
|
|
|
|
|
|
-- case empty
|
|
|
|
|
simp
|
|
|
|
|
exact hf.meromorphicOn
|
|
|
|
|
|
|
|
|
|
-- case insert
|
|
|
|
|
intro u P hu iHyp
|
|
|
|
|
intro hOrder
|
|
|
|
|
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
|
|
|
|
|
|
2024-11-19 15:54:28 +01:00
|
|
|
|
have h₀ : AnalyticAt ℂ (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
|
2024-11-19 13:57:08 +01:00
|
|
|
|
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
|
|
|
|
funext w
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
|
|
|
|
apply Finset.analyticAt_prod
|
|
|
|
|
intro p hp
|
|
|
|
|
apply AnalyticAt.zpow
|
|
|
|
|
apply AnalyticAt.sub
|
|
|
|
|
apply analyticAt_id
|
|
|
|
|
apply analyticAt_const
|
|
|
|
|
by_contra hCon
|
|
|
|
|
rw [sub_eq_zero] at hCon
|
|
|
|
|
have : p.1 = u := by
|
|
|
|
|
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
|
|
|
|
rw [← this] at hu
|
|
|
|
|
simp [hp] at hu
|
2024-11-19 15:54:28 +01:00
|
|
|
|
|
|
|
|
|
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
|
2024-11-19 13:57:08 +01:00
|
|
|
|
simp only [Finset.prod_apply]
|
|
|
|
|
rw [Finset.prod_ne_zero_iff]
|
|
|
|
|
intro p hp
|
|
|
|
|
apply zpow_ne_zero
|
|
|
|
|
by_contra hCon
|
|
|
|
|
rw [sub_eq_zero] at hCon
|
|
|
|
|
have : p.1 = u := by
|
|
|
|
|
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
|
|
|
|
rw [← this] at hu
|
|
|
|
|
simp [hp] at hu
|
|
|
|
|
|
2024-11-19 15:54:28 +01:00
|
|
|
|
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
|
|
|
|
|
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
|
|
|
|
|
rw [← h₄g₀]
|
|
|
|
|
exact hf u u.2
|
2024-11-19 13:57:08 +01:00
|
|
|
|
|
2024-11-19 13:20:19 +01:00
|
|
|
|
have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by
|
2024-11-19 15:54:28 +01:00
|
|
|
|
by_contra hCon
|
|
|
|
|
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
|
|
|
|
simp_rw [← h₄g₀, hCon] at A
|
|
|
|
|
simp at A
|
|
|
|
|
let B := hOrder u (Finset.mem_insert_self u P)
|
|
|
|
|
tauto
|
2024-11-19 13:20:19 +01:00
|
|
|
|
|
|
|
|
|
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
|
|
|
|
|
use g
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₁g
|
|
|
|
|
· constructor
|
2024-11-19 15:54:28 +01:00
|
|
|
|
· intro ⟨v₁, v₂⟩
|
|
|
|
|
simp
|
|
|
|
|
simp at v₂
|
|
|
|
|
rcases v₂ with hv|hv
|
|
|
|
|
· rwa [hv]
|
|
|
|
|
· let A := h₂g₀ ⟨v₁, hv⟩
|
|
|
|
|
rw [h₄g] at A
|
|
|
|
|
rw [← analyticAt_of_mul_analytic] at A
|
|
|
|
|
simp at A
|
|
|
|
|
exact A
|
|
|
|
|
--
|
|
|
|
|
simp
|
|
|
|
|
apply AnalyticAt.zpow
|
|
|
|
|
apply AnalyticAt.sub
|
|
|
|
|
apply analyticAt_id
|
|
|
|
|
apply analyticAt_const
|
|
|
|
|
by_contra hCon
|
|
|
|
|
rw [sub_eq_zero] at hCon
|
|
|
|
|
|
|
|
|
|
have : v₁ = u := by
|
|
|
|
|
exact SetCoe.ext hCon
|
|
|
|
|
rw [this] at hv
|
|
|
|
|
tauto
|
|
|
|
|
--
|
|
|
|
|
apply zpow_ne_zero
|
|
|
|
|
simp
|
|
|
|
|
by_contra hCon
|
|
|
|
|
rw [sub_eq_zero] at hCon
|
|
|
|
|
have : v₁ = u := by
|
|
|
|
|
exact SetCoe.ext hCon
|
|
|
|
|
rw [this] at hv
|
|
|
|
|
tauto
|
|
|
|
|
|
2024-11-19 13:20:19 +01:00
|
|
|
|
· constructor
|
2024-11-19 15:54:28 +01:00
|
|
|
|
· intro ⟨v₁, v₂⟩
|
|
|
|
|
simp
|
|
|
|
|
simp at v₂
|
|
|
|
|
rcases v₂ with hv|hv
|
|
|
|
|
· rwa [hv]
|
|
|
|
|
· by_contra hCon
|
|
|
|
|
let A := h₃g₀ ⟨v₁,hv⟩
|
|
|
|
|
rw [h₄g] at A
|
|
|
|
|
simp at A
|
|
|
|
|
tauto
|
|
|
|
|
· conv =>
|
|
|
|
|
left
|
|
|
|
|
rw [h₄g₀, h₄g]
|
|
|
|
|
simp
|
|
|
|
|
rw [mul_assoc]
|
|
|
|
|
congr
|
|
|
|
|
rw [Finset.prod_insert]
|
|
|
|
|
simp
|
|
|
|
|
congr
|
|
|
|
|
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
|
|
|
|
|
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
|
|
|
|
exact Eq.eventuallyEq h₄g₀
|
|
|
|
|
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
|
|
|
|
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
|
|
|
|
|
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
|
|
|
|
|
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
|
|
|
|
rw [C]
|
|
|
|
|
let D := h₀.order_eq_zero_iff.2 h₁
|
|
|
|
|
let E := h₀.meromorphicAt_order
|
|
|
|
|
rw [E, D]
|
|
|
|
|
simp
|
|
|
|
|
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
|
|
|
|
|
unfold MeromorphicOn.divisor
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [this]
|
|
|
|
|
--
|
|
|
|
|
simpa
|
2024-11-19 16:33:33 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeromorphicOn.decompose₃
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{U : Set ℂ}
|
|
|
|
|
(h₁U : IsCompact U)
|
|
|
|
|
(h₂U : IsConnected U)
|
|
|
|
|
(h₁f : StronglyMeromorphicOn f U)
|
|
|
|
|
(h₂f : ∃ u : U, f u ≠ 0) :
|
|
|
|
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
|
|
|
|
∧ (AnalyticOn ℂ g U)
|
|
|
|
|
∧ (∀ u : U, g u ≠ 0)
|
|
|
|
|
∧ (f = g * ∏ᶠ u : U, fun z ↦ (z - u.1) ^ (h₁f.meromorphicOn.divisor u.1)) := by
|
|
|
|
|
|
|
|
|
|
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
|
|
|
|
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
|
|
|
|
|
have : PreconnectedSpace U := by
|
|
|
|
|
apply isPreconnected_iff_preconnectedSpace.mp
|
|
|
|
|
exact IsConnected.isPreconnected h₂U
|
|
|
|
|
rw [isClopen_iff] at A
|
|
|
|
|
rcases A with h|h
|
|
|
|
|
· intro u
|
|
|
|
|
have : u ∉ (∅ : Set U) := by exact fun a => a
|
|
|
|
|
rw [← h] at this
|
|
|
|
|
simp at this
|
|
|
|
|
tauto
|
|
|
|
|
· obtain ⟨u, hu⟩ := h₂f
|
|
|
|
|
let A := (h₁f u u.2).order_eq_zero_iff.2 hu
|
|
|
|
|
have : u ∈ (Set.univ : Set U) := by trivial
|
|
|
|
|
rw [← h] at this
|
|
|
|
|
simp at this
|
|
|
|
|
rw [A] at this
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
have h₄f : Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
|
|
|
|
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
|
|
|
|
|
|
|
|
|
|
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
|
|
|
|
|
have : Finite P' := by
|
|
|
|
|
unfold P'
|
|
|
|
|
refine Finite.of_injective ?f ?H
|
|
|
|
|
simp
|
|
|
|
|
apply Finite.of_injective
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorry
|