2024-06-11 17:18:24 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.TaylorSeries
|
|
|
|
|
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
2024-06-17 10:11:39 +02:00
|
|
|
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
2024-06-11 17:18:24 +02:00
|
|
|
|
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
|
|
|
|
import Nevanlinna.cauchyRiemann
|
|
|
|
|
import Nevanlinna.partialDeriv
|
|
|
|
|
|
|
|
|
|
|
2024-06-12 12:30:08 +02:00
|
|
|
|
theorem MeasureTheory.integral2_divergence₃
|
2024-06-11 17:18:24 +02:00
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
|
|
|
|
(f g : ℝ × ℝ → E)
|
|
|
|
|
(h₁f : ContDiff ℝ 1 f)
|
|
|
|
|
(h₁g : ContDiff ℝ 1 g)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
|
|
|
|
|
|
|
|
|
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅
|
|
|
|
|
exact Set.countable_empty
|
|
|
|
|
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
|
|
|
|
|
exact h₁f.continuous.continuousOn
|
|
|
|
|
--
|
|
|
|
|
exact h₁g.continuous.continuousOn
|
|
|
|
|
--
|
|
|
|
|
rw [Set.diff_empty]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
intro x _
|
2024-06-11 17:18:24 +02:00
|
|
|
|
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
|
|
|
|
--
|
|
|
|
|
rw [Set.diff_empty]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
intro y _
|
2024-06-11 17:18:24 +02:00
|
|
|
|
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
|
|
|
|
--
|
|
|
|
|
apply ContinuousOn.integrableOn_compact
|
|
|
|
|
apply IsCompact.prod
|
|
|
|
|
exact isCompact_uIcc
|
|
|
|
|
exact isCompact_uIcc
|
|
|
|
|
apply ContinuousOn.add
|
|
|
|
|
apply Continuous.continuousOn
|
|
|
|
|
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
|
|
|
|
|
apply Continuous.continuousOn
|
|
|
|
|
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem integral_divergence₄
|
2024-06-12 12:30:08 +02:00
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
2024-06-11 17:18:24 +02:00
|
|
|
|
(f g : ℂ → E)
|
|
|
|
|
(h₁f : ContDiff ℝ 1 f)
|
|
|
|
|
(h₁g : ContDiff ℝ 1 g)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by
|
|
|
|
|
|
2024-06-12 12:30:08 +02:00
|
|
|
|
let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm
|
|
|
|
|
let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm
|
|
|
|
|
|
|
|
|
|
have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl
|
|
|
|
|
have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl
|
|
|
|
|
repeat (conv in f { re := _, im := _ } => rw [sfr])
|
|
|
|
|
repeat (conv in g { re := _, im := _ } => rw [sgr])
|
|
|
|
|
|
|
|
|
|
have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by
|
|
|
|
|
rw [fderiv.comp]
|
|
|
|
|
rw [Complex.equivRealProdCLM.symm.fderiv]
|
|
|
|
|
tauto
|
|
|
|
|
apply Differentiable.differentiableAt
|
|
|
|
|
exact h₁f.differentiable le_rfl
|
|
|
|
|
exact Complex.equivRealProdCLM.symm.differentiableAt
|
|
|
|
|
conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr']
|
|
|
|
|
|
|
|
|
|
have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by
|
|
|
|
|
rw [fderiv.comp]
|
|
|
|
|
rw [Complex.equivRealProdCLM.symm.fderiv]
|
|
|
|
|
tauto
|
|
|
|
|
apply Differentiable.differentiableAt
|
|
|
|
|
exact h₁g.differentiable le_rfl
|
|
|
|
|
exact Complex.equivRealProdCLM.symm.differentiableAt
|
|
|
|
|
conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr']
|
|
|
|
|
|
|
|
|
|
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
|
|
|
|
|
-- ContDiff ℝ 1 fr
|
|
|
|
|
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
|
|
|
|
|
-- ContDiff ℝ 1 gr
|
|
|
|
|
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem integral_divergence₅
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
2024-06-14 10:53:24 +02:00
|
|
|
|
(F : ℂ → E)
|
2024-06-12 12:30:08 +02:00
|
|
|
|
(hF : Differentiable ℂ F)
|
2024-06-14 10:53:24 +02:00
|
|
|
|
(lowerLeft upperRight : ℂ) :
|
|
|
|
|
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, lowerLeft.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨upperRight.re, x⟩ =
|
|
|
|
|
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, upperRight.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨lowerLeft.re, x⟩ := by
|
2024-06-12 12:30:08 +02:00
|
|
|
|
|
2024-06-12 13:50:29 +02:00
|
|
|
|
let h₁f : ContDiff ℝ 1 F := (hF.contDiff : ContDiff ℂ 1 F).restrict_scalars ℝ
|
|
|
|
|
|
2024-06-14 10:53:24 +02:00
|
|
|
|
let h₁g : ContDiff ℝ 1 (-Complex.I • F) := by
|
|
|
|
|
have : -Complex.I • F = fun x ↦ -Complex.I • F x := by rfl
|
2024-06-12 13:50:29 +02:00
|
|
|
|
rw [this]
|
|
|
|
|
apply ContDiff.comp
|
2024-06-14 10:53:24 +02:00
|
|
|
|
exact contDiff_const_smul _
|
2024-06-12 13:50:29 +02:00
|
|
|
|
exact h₁f
|
|
|
|
|
|
2024-06-14 10:53:24 +02:00
|
|
|
|
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
2024-06-12 12:30:08 +02:00
|
|
|
|
|
2024-06-14 10:53:24 +02:00
|
|
|
|
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ _ F z := by rfl
|
|
|
|
|
conv at A in (fderiv ℝ F _) _ => rw [this]
|
|
|
|
|
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ _ (-Complex.I • F) z := by rfl
|
|
|
|
|
conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
conv at A =>
|
|
|
|
|
left
|
|
|
|
|
arg 1
|
|
|
|
|
intro x
|
|
|
|
|
arg 1
|
|
|
|
|
intro y
|
2024-06-14 10:53:24 +02:00
|
|
|
|
rw [CauchyRiemann₄ hF]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
rw [partialDeriv_smul'₂]
|
|
|
|
|
simp
|
|
|
|
|
simp at A
|
|
|
|
|
|
2024-06-14 10:53:24 +02:00
|
|
|
|
have {t₁ t₂ t₃ t₄ : E} : 0 = (t₁ - t₂) + t₃ + t₄ → t₁ + t₃ = t₂ - t₄ := by
|
|
|
|
|
intro hyp
|
|
|
|
|
calc
|
|
|
|
|
t₁ + t₃ = t₁ + t₃ - 0 := by rw [sub_zero (t₁ + t₃)]
|
|
|
|
|
_ = t₁ + t₃ - (t₁ - t₂ + t₃ + t₄) := by rw [hyp]
|
|
|
|
|
_ = t₂ - t₄ := by abel
|
|
|
|
|
let B := this A
|
|
|
|
|
repeat
|
|
|
|
|
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
|
|
|
|
|
simp at B
|
|
|
|
|
exact B
|
2024-06-14 16:07:58 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noncomputable def primitive
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
|
|
|
|
ℂ → (ℂ → E) → (ℂ → E) := by
|
|
|
|
|
intro z₀
|
|
|
|
|
intro f
|
|
|
|
|
exact fun z ↦ (∫ (x : ℝ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ℝ) in z₀.im..z.im, f ⟨z.re, x⟩
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem primitive_zeroAtBasepoint
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
|
|
|
|
(f : ℂ → E)
|
|
|
|
|
(z₀ : ℂ) :
|
|
|
|
|
(primitive z₀ f) z₀ = 0 := by
|
|
|
|
|
unfold primitive
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem primitive_lem1
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] [IsScalarTower ℝ ℂ E]
|
|
|
|
|
(v : E) :
|
2024-06-14 21:00:51 +02:00
|
|
|
|
HasDerivAt (primitive 0 (fun _ ↦ v)) v 0 := by
|
2024-06-14 16:07:58 +02:00
|
|
|
|
unfold primitive
|
|
|
|
|
simp
|
|
|
|
|
|
2024-06-14 21:00:51 +02:00
|
|
|
|
have : (fun (z : ℂ) => z.re • v + Complex.I • z.im • v) = (fun (y : ℂ) => ((fun w ↦ w) y) • v) := by
|
2024-06-14 16:07:58 +02:00
|
|
|
|
funext z
|
|
|
|
|
rw [smul_comm]
|
|
|
|
|
rw [← smul_assoc]
|
|
|
|
|
simp
|
|
|
|
|
have : z.re • v = (z.re : ℂ) • v := by exact rfl
|
|
|
|
|
rw [this, ← add_smul]
|
|
|
|
|
simp
|
|
|
|
|
rw [this]
|
2024-06-17 10:11:39 +02:00
|
|
|
|
|
|
|
|
|
have hc : HasDerivAt (fun (w : ℂ) ↦ w) 1 0 := by
|
2024-06-14 21:00:51 +02:00
|
|
|
|
apply hasDerivAt_id'
|
|
|
|
|
nth_rewrite 2 [← (one_smul ℂ v)]
|
|
|
|
|
exact HasDerivAt.smul_const hc v
|
2024-06-14 16:07:58 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem primitive_fderivAtBasepoint
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
2024-06-17 10:11:39 +02:00
|
|
|
|
(f : ℂ → E)
|
2024-06-16 19:00:30 +02:00
|
|
|
|
(hf : Continuous f) :
|
2024-06-14 16:07:58 +02:00
|
|
|
|
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
|
|
|
|
unfold primitive
|
|
|
|
|
simp
|
2024-06-14 21:00:51 +02:00
|
|
|
|
apply hasDerivAt_iff_isLittleO.2
|
|
|
|
|
simp
|
2024-06-16 19:00:30 +02:00
|
|
|
|
rw [Asymptotics.isLittleO_iff]
|
|
|
|
|
intro c hc
|
|
|
|
|
|
2024-06-17 10:11:39 +02:00
|
|
|
|
have {z : ℂ} {e : E} : z • e = (∫ (x : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (x : ℝ) in (0)..(z.im), e:= by
|
2024-06-16 19:00:30 +02:00
|
|
|
|
simp
|
|
|
|
|
rw [smul_comm]
|
|
|
|
|
rw [← smul_assoc]
|
|
|
|
|
simp
|
|
|
|
|
have : z.re • e = (z.re : ℂ) • e := by exact rfl
|
|
|
|
|
rw [this, ← add_smul]
|
|
|
|
|
simp
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
intro x
|
|
|
|
|
left
|
|
|
|
|
arg 1
|
|
|
|
|
arg 2
|
|
|
|
|
rw [this]
|
2024-06-17 10:11:39 +02:00
|
|
|
|
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
2024-06-16 19:00:30 +02:00
|
|
|
|
abel
|
|
|
|
|
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by sorry
|
|
|
|
|
have t₁ {r : ℝ} :IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 r := by sorry
|
|
|
|
|
have t₂ {a b : ℝ}: IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by sorry
|
|
|
|
|
have t₃ {a : ℝ} : IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 a := by sorry
|
|
|
|
|
conv =>
|
|
|
|
|
left
|
|
|
|
|
intro x
|
|
|
|
|
left
|
|
|
|
|
arg 1
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [← smul_sub]
|
|
|
|
|
rw [← intervalIntegral.integral_sub t₀ t₁]
|
|
|
|
|
rw [← intervalIntegral.integral_sub t₂ t₃]
|
|
|
|
|
rw [Filter.eventually_iff_exists_mem]
|
|
|
|
|
|
2024-06-17 17:22:17 +02:00
|
|
|
|
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
2024-06-17 10:11:39 +02:00
|
|
|
|
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
|
|
|
|
have h₂s : 0 ∈ s := by
|
|
|
|
|
apply Set.mem_preimage.mpr
|
2024-06-17 17:22:17 +02:00
|
|
|
|
apply Metric.mem_ball_self
|
|
|
|
|
linarith
|
2024-06-16 19:15:19 +02:00
|
|
|
|
|
2024-06-17 10:11:39 +02:00
|
|
|
|
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
2024-06-16 19:15:19 +02:00
|
|
|
|
|
2024-06-17 17:22:17 +02:00
|
|
|
|
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
2024-06-17 10:11:39 +02:00
|
|
|
|
intro y hy
|
2024-06-17 17:22:17 +02:00
|
|
|
|
apply mem_ball_iff_norm.mp (h₂ε hy)
|
2024-06-17 10:11:39 +02:00
|
|
|
|
|
|
|
|
|
use Metric.ball 0 ε
|
2024-06-16 19:00:30 +02:00
|
|
|
|
constructor
|
2024-06-17 10:11:39 +02:00
|
|
|
|
· exact Metric.ball_mem_nhds 0 h₁ε
|
2024-06-16 19:00:30 +02:00
|
|
|
|
· intro y hy
|
2024-06-17 10:11:39 +02:00
|
|
|
|
have h₁y : |y.re| < ε := by
|
2024-06-17 17:22:17 +02:00
|
|
|
|
calc |y.re|
|
|
|
|
|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
|
|
|
|
_ < ε := by
|
|
|
|
|
let A := mem_ball_iff_norm.1 hy
|
|
|
|
|
simp at A
|
|
|
|
|
assumption
|
2024-06-18 09:56:44 +02:00
|
|
|
|
have h₂y : |y.im| < ε := by
|
|
|
|
|
calc |y.im|
|
|
|
|
|
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
|
|
|
|
|
_ < ε := by
|
|
|
|
|
let A := mem_ball_iff_norm.1 hy
|
|
|
|
|
simp at A
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
|
|
|
|
|
let A := h.1
|
|
|
|
|
let B := h.2
|
|
|
|
|
rcases le_total 0 y' with hy | hy
|
|
|
|
|
· simp [hy] at A
|
|
|
|
|
simp [hy] at B
|
|
|
|
|
rw [abs_of_nonneg hy]
|
|
|
|
|
rw [abs_of_nonneg (le_of_lt A)]
|
|
|
|
|
exact B
|
|
|
|
|
· simp [hy] at A
|
|
|
|
|
simp [hy] at B
|
|
|
|
|
rw [abs_of_nonpos hy]
|
|
|
|
|
rw [abs_of_nonpos]
|
|
|
|
|
linarith [h.1]
|
|
|
|
|
exact B
|
2024-06-17 17:22:17 +02:00
|
|
|
|
|
|
|
|
|
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
2024-06-17 10:11:39 +02:00
|
|
|
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
|
|
|
|
intro x hx
|
2024-06-17 17:22:17 +02:00
|
|
|
|
|
|
|
|
|
have h₁x : |x| < ε := by
|
2024-06-18 09:56:44 +02:00
|
|
|
|
calc |x|
|
|
|
|
|
_ ≤ |y.re| := intervalComputation hx
|
|
|
|
|
_ < ε := h₁y
|
2024-06-17 10:11:39 +02:00
|
|
|
|
apply le_of_lt
|
|
|
|
|
apply h₃ε { re := x, im := 0 }
|
2024-06-17 17:22:17 +02:00
|
|
|
|
rw [mem_ball_iff_norm]
|
2024-06-17 10:11:39 +02:00
|
|
|
|
simp
|
|
|
|
|
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
|
|
|
|
rw [this]
|
|
|
|
|
rw [Complex.abs_ofReal]
|
|
|
|
|
exact h₁x
|
|
|
|
|
|
2024-06-17 17:22:17 +02:00
|
|
|
|
|
|
|
|
|
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
|
|
|
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
|
|
|
|
intro x hx
|
2024-06-18 09:56:44 +02:00
|
|
|
|
|
2024-06-17 17:22:17 +02:00
|
|
|
|
have h₁x : |x| < ε := by
|
2024-06-18 09:56:44 +02:00
|
|
|
|
calc |x|
|
|
|
|
|
_ ≤ |y.im| := intervalComputation hx
|
|
|
|
|
_ < ε := h₂y
|
|
|
|
|
|
2024-06-17 17:22:17 +02:00
|
|
|
|
apply le_of_lt
|
|
|
|
|
apply h₃ε { re := y.re, im := x }
|
|
|
|
|
simp
|
2024-06-18 09:56:44 +02:00
|
|
|
|
|
|
|
|
|
calc Complex.abs { re := y.re, im := x }
|
|
|
|
|
_ ≤ |y.re| + |x| := by
|
|
|
|
|
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
|
|
|
|
_ ≤ 2 * ε := by
|
|
|
|
|
linarith
|
2024-06-17 17:22:17 +02:00
|
|
|
|
|
2024-06-16 19:00:30 +02:00
|
|
|
|
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
2024-06-17 17:22:17 +02:00
|
|
|
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
|
|
|
|
apply norm_add_le
|
2024-06-17 10:11:39 +02:00
|
|
|
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
2024-06-16 19:00:30 +02:00
|
|
|
|
simp
|
|
|
|
|
rw [norm_smul]
|
|
|
|
|
simp
|
2024-06-18 09:56:44 +02:00
|
|
|
|
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + (c / (4 : ℝ)) * |y.im - 0| := by
|
2024-06-16 19:00:30 +02:00
|
|
|
|
apply add_le_add
|
2024-06-17 17:22:17 +02:00
|
|
|
|
exact t₁
|
2024-06-18 09:56:44 +02:00
|
|
|
|
exact t₂
|
|
|
|
|
_ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by
|
|
|
|
|
simp
|
|
|
|
|
rw [mul_add]
|
|
|
|
|
_ ≤ c * ‖y‖ := by
|
|
|
|
|
apply mul_le_mul
|
|
|
|
|
apply div_le_self
|
|
|
|
|
exact le_of_lt hc
|
|
|
|
|
linarith
|
|
|
|
|
sorry
|
2024-06-14 16:07:58 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem primitive_additivity
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
|
|
|
|
(f : ℂ → E)
|
|
|
|
|
(hf : Differentiable ℂ f)
|
|
|
|
|
(z₀ z₁ : ℂ) :
|
|
|
|
|
(primitive z₁ f) = (primitive z₀ f) - (fun z ↦ primitive z₀ f z₁) := by
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorry
|