Update holomorphic.primitive.lean
This commit is contained in:
parent
ce751dff83
commit
0f6c905f60
@ -4,67 +4,6 @@ import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
/-
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G]
|
||||
|
||||
noncomputable def Complex.primitive
|
||||
(f : ℂ → F) : ℂ → F :=
|
||||
fun z ↦ ∫ t : ℝ in (0)..1, z • f (t * z)
|
||||
-/
|
||||
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f : ℝ × ℝ → E)
|
||||
(g : ℝ × ℝ → E)
|
||||
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||||
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ)
|
||||
(s : Set (ℝ × ℝ))
|
||||
(hs : s.Countable)
|
||||
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||||
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||||
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x)
|
||||
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x)
|
||||
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
||||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||||
exact
|
||||
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg
|
||||
Hdf Hdg Hi
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f : ℝ × ℝ → E)
|
||||
(g : ℝ × ℝ → E)
|
||||
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||||
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ)
|
||||
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||||
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||||
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x)
|
||||
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x)
|
||||
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
||||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||||
|
||||
apply
|
||||
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅
|
||||
exact Set.countable_empty
|
||||
assumption
|
||||
assumption
|
||||
rwa [Set.diff_empty]
|
||||
rwa [Set.diff_empty]
|
||||
assumption
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
@ -149,49 +88,46 @@ theorem integral_divergence₄
|
||||
|
||||
theorem integral_divergence₅
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(F : ℂ → ℂ)
|
||||
(F : ℂ → E)
|
||||
(hF : Differentiable ℂ F)
|
||||
(a₁ : ℝ)
|
||||
(a₂ : ℝ)
|
||||
(b₁ : ℝ)
|
||||
(b₂ : ℝ) :
|
||||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := b₂ }) +
|
||||
(∫ (y : ℝ) in a₂..b₂, F { re := b₁, im := y })
|
||||
=
|
||||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := a₂ }) +
|
||||
(∫ (y : ℝ) in a₂..b₂, F { re := a₁, im := y }) := by
|
||||
(lowerLeft upperRight : ℂ) :
|
||||
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, lowerLeft.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨upperRight.re, x⟩ =
|
||||
(∫ (x : ℝ) in lowerLeft.re..upperRight.re, F ⟨x, upperRight.im⟩) + Complex.I • ∫ (x : ℝ) in lowerLeft.im..upperRight.im, F ⟨lowerLeft.re, x⟩ := by
|
||||
|
||||
let h₁f : ContDiff ℝ 1 F := (hF.contDiff : ContDiff ℂ 1 F).restrict_scalars ℝ
|
||||
|
||||
let g := Complex.I • F
|
||||
let h₁g : ContDiff ℝ 1 (Complex.I • F) := by
|
||||
have : Complex.I • F = fun x ↦ Complex.I • F x := by rfl
|
||||
let h₁g : ContDiff ℝ 1 (-Complex.I • F) := by
|
||||
have : -Complex.I • F = fun x ↦ -Complex.I • F x := by rfl
|
||||
rw [this]
|
||||
apply ContDiff.comp
|
||||
exact contDiff_const_smul Complex.I
|
||||
exact contDiff_const_smul _
|
||||
exact h₁f
|
||||
|
||||
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
||||
|
||||
let A := integral_divergence₄ F g h₁f h₁g a₁ a₂ b₁ b₂
|
||||
|
||||
have {z : ℂ} : fderiv ℝ F z 1 = partialDeriv ℝ 1 F z := by rfl
|
||||
conv at A in (fderiv ℝ F _) 1 => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ g z Complex.I = partialDeriv ℝ Complex.I g z := by rfl
|
||||
conv at A in (fderiv ℝ g _) Complex.I => rw [this]
|
||||
|
||||
have : Differentiable ℂ g := by sorry
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ _ F z := by rfl
|
||||
conv at A in (fderiv ℝ F _) _ => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ _ (-Complex.I • F) z := by rfl
|
||||
conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this]
|
||||
conv at A =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
arg 1
|
||||
intro y
|
||||
rw [CauchyRiemann₄ this]
|
||||
rw [CauchyRiemann₄ hF]
|
||||
rw [partialDeriv_smul'₂]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
simp at A
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
have {t₁ t₂ t₃ t₄ : E} : 0 = (t₁ - t₂) + t₃ + t₄ → t₁ + t₃ = t₂ - t₄ := by
|
||||
intro hyp
|
||||
calc
|
||||
t₁ + t₃ = t₁ + t₃ - 0 := by rw [sub_zero (t₁ + t₃)]
|
||||
_ = t₁ + t₃ - (t₁ - t₂ + t₃ + t₄) := by rw [hyp]
|
||||
_ = t₂ - t₄ := by abel
|
||||
let B := this A
|
||||
repeat
|
||||
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
|
||||
simp at B
|
||||
exact B
|
||||
|
Loading…
Reference in New Issue
Block a user