nevanlinna/Nevanlinna/holomorphic.primitive.lean

140 lines
6.3 KiB
Plaintext
Raw Normal View History

2024-06-11 17:18:24 +02:00
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
import Mathlib.MeasureTheory.Function.LocallyIntegrable
import Nevanlinna.cauchyRiemann
import Nevanlinna.partialDeriv
/-
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F] [CompleteSpace F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace G] [CompleteSpace G]
noncomputable def Complex.primitive
(f : → F) : → F :=
fun z ↦ ∫ t : in (0)..1, z • f (t * z)
-/
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : × → E)
(g : × → E)
(f' : × × →L[] E)
(g' : × × →L[] E)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : )
(s : Set ( × ))
(hs : s.Countable)
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x)
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x)
(Hi : MeasureTheory.IntegrableOn (fun (x : × ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ) in a₁..b₁, g (x, b₂)) - ∫ (x : ) in a₁..b₁, g (x, a₂)) + ∫ (y : ) in a₂..b₂, f (b₁, y)) - ∫ (y : ) in a₂..b₂, f (a₁, y) := by
exact
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg
Hdf Hdg Hi
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : × → E)
(g : × → E)
(f' : × × →L[] E)
(g' : × × →L[] E)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : )
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x)
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x)
(Hi : MeasureTheory.IntegrableOn (fun (x : × ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ) in a₁..b₁, g (x, b₂)) - ∫ (x : ) in a₁..b₁, g (x, a₂)) + ∫ (y : ) in a₂..b₂, f (b₁, y)) - ∫ (y : ) in a₂..b₂, f (a₁, y) := by
apply
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅
exact Set.countable_empty
assumption
assumption
rwa [Set.diff_empty]
rwa [Set.diff_empty]
assumption
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₃
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f g : × → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) (x, y)) (1, 0) + ((fderiv g) (x, y)) (0, 1) = (((∫ (x : ) in a₁..b₁, g (x, b₂)) - ∫ (x : ) in a₁..b₁, g (x, a₂)) + ∫ (y : ) in a₂..b₂, f (b₁, y)) - ∫ (y : ) in a₂..b₂, f (a₁, y) := by
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv f) (fderiv g) a₁ a₂ b₁ b₂ ∅
exact Set.countable_empty
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
exact h₁f.continuous.continuousOn
--
exact h₁g.continuous.continuousOn
--
rw [Set.diff_empty]
intro x h₁x
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
--
rw [Set.diff_empty]
intro y h₁y
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
--
apply ContinuousOn.integrableOn_compact
apply IsCompact.prod
exact isCompact_uIcc
exact isCompact_uIcc
apply ContinuousOn.add
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
theorem integral_divergence₄
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f g : → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) ⟨x, y⟩ ) 1 + ((fderiv g) ⟨x, y⟩) Complex.I = (((∫ (x : ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ) in a₂..b₂, f ⟨a₁, y⟩ := by
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv f) (fderiv g) a₁ a₂ b₁ b₂ ∅
exact Set.countable_empty
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
exact h₁f.continuous.continuousOn
--
exact h₁g.continuous.continuousOn
--
rw [Set.diff_empty]
intro x h₁x
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
--
rw [Set.diff_empty]
intro y h₁y
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
--
apply ContinuousOn.integrableOn_compact
apply IsCompact.prod
exact isCompact_uIcc
exact isCompact_uIcc
apply ContinuousOn.add
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const