import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.MeasureTheory.Integral.DivergenceTheorem import Mathlib.MeasureTheory.Function.LocallyIntegrable import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv /- variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F] variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G] noncomputable def Complex.primitive (f : ℂ → F) : ℂ → F := fun z ↦ ∫ t : ℝ in (0)..1, z • f (t * z) -/ theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f : ℝ × ℝ → E) (g : ℝ × ℝ → E) (f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) (s : Set (ℝ × ℝ)) (hs : s.Countable) (Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x) (Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x) (Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by exact integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg Hdf Hdg Hi theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f : ℝ × ℝ → E) (g : ℝ × ℝ → E) (f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) (Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)) (Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x) (Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x) (Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅ exact Set.countable_empty assumption assumption rwa [Set.diff_empty] rwa [Set.diff_empty] assumption theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₃ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (f g : ℝ × ℝ → E) (h₁f : ContDiff ℝ 1 f) (h₁g : ContDiff ℝ 1 g) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅ exact Set.countable_empty -- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) exact h₁f.continuous.continuousOn -- exact h₁g.continuous.continuousOn -- rw [Set.diff_empty] intro x h₁x exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x) -- rw [Set.diff_empty] intro y h₁y exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y) -- apply ContinuousOn.integrableOn_compact apply IsCompact.prod exact isCompact_uIcc exact isCompact_uIcc apply ContinuousOn.add apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const theorem integral_divergence₄ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] (f g : ℂ → E) (h₁f : ContDiff ℝ 1 f) (h₁g : ContDiff ℝ 1 g) (a₁ : ℝ) (a₂ : ℝ) (b₁ : ℝ) (b₂ : ℝ) : ∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅ exact Set.countable_empty -- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) exact h₁f.continuous.continuousOn -- exact h₁g.continuous.continuousOn -- rw [Set.diff_empty] intro x h₁x exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x) -- rw [Set.diff_empty] intro y h₁y exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y) -- apply ContinuousOn.integrableOn_compact apply IsCompact.prod exact isCompact_uIcc exact isCompact_uIcc apply ContinuousOn.add apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const apply Continuous.continuousOn exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const