Update holomorphic.primitive.lean
This commit is contained in:
parent
46ededdde7
commit
2d7e62bb49
@ -243,14 +243,38 @@ theorem primitive_fderivAtBasepoint
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
assumption
|
||||
have h₂y : |y.im| < ε := by
|
||||
calc |y.im|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
|
||||
_ < ε := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
assumption
|
||||
|
||||
have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
|
||||
let A := h.1
|
||||
let B := h.2
|
||||
rcases le_total 0 y' with hy | hy
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonneg hy]
|
||||
rw [abs_of_nonneg (le_of_lt A)]
|
||||
exact B
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonpos hy]
|
||||
rw [abs_of_nonpos]
|
||||
linarith [h.1]
|
||||
exact B
|
||||
|
||||
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε := by
|
||||
|
||||
sorry
|
||||
calc |x|
|
||||
_ ≤ |y.re| := intervalComputation hx
|
||||
_ < ε := h₁y
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
@ -264,16 +288,21 @@ theorem primitive_fderivAtBasepoint
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
|
||||
have h₁x : |x| < ε := by
|
||||
sorry
|
||||
calc |x|
|
||||
_ ≤ |y.im| := intervalComputation hx
|
||||
_ < ε := h₂y
|
||||
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
simp
|
||||
have : { re := y.re, im := x } = (x : ℂ) := by
|
||||
rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
exact h₁x
|
||||
|
||||
calc Complex.abs { re := y.re, im := x }
|
||||
_ ≤ |y.re| + |x| := by
|
||||
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
||||
_ ≤ 2 * ε := by
|
||||
linarith
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
@ -282,14 +311,19 @@ theorem primitive_fderivAtBasepoint
|
||||
simp
|
||||
rw [norm_smul]
|
||||
simp
|
||||
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply add_le_add
|
||||
exact t₁
|
||||
rfl
|
||||
_ ≤ c * ‖y‖ := by sorry
|
||||
|
||||
|
||||
sorry
|
||||
exact t₂
|
||||
_ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by
|
||||
simp
|
||||
rw [mul_add]
|
||||
_ ≤ c * ‖y‖ := by
|
||||
apply mul_le_mul
|
||||
apply div_le_self
|
||||
exact le_of_lt hc
|
||||
linarith
|
||||
sorry
|
||||
|
||||
|
||||
theorem primitive_additivity
|
||||
|
Loading…
Reference in New Issue
Block a user