diff --git a/Nevanlinna/holomorphic.primitive.lean b/Nevanlinna/holomorphic.primitive.lean index 0050ff7..c18e1af 100644 --- a/Nevanlinna/holomorphic.primitive.lean +++ b/Nevanlinna/holomorphic.primitive.lean @@ -243,14 +243,38 @@ theorem primitive_fderivAtBasepoint let A := mem_ball_iff_norm.1 hy simp at A assumption + have h₂y : |y.im| < ε := by + calc |y.im| + _ ≤ Complex.abs y := by apply Complex.abs_im_le_abs + _ < ε := by + let A := mem_ball_iff_norm.1 hy + simp at A + assumption + + have intervalComputation {x' y' : ℝ} (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by + let A := h.1 + let B := h.2 + rcases le_total 0 y' with hy | hy + · simp [hy] at A + simp [hy] at B + rw [abs_of_nonneg hy] + rw [abs_of_nonneg (le_of_lt A)] + exact B + · simp [hy] at A + simp [hy] at B + rw [abs_of_nonpos hy] + rw [abs_of_nonpos] + linarith [h.1] + exact B have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by apply intervalIntegral.norm_integral_le_of_norm_le_const intro x hx have h₁x : |x| < ε := by - - sorry + calc |x| + _ ≤ |y.re| := intervalComputation hx + _ < ε := h₁y apply le_of_lt apply h₃ε { re := x, im := 0 } rw [mem_ball_iff_norm] @@ -264,16 +288,21 @@ theorem primitive_fderivAtBasepoint have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by apply intervalIntegral.norm_integral_le_of_norm_le_const intro x hx + have h₁x : |x| < ε := by - sorry + calc |x| + _ ≤ |y.im| := intervalComputation hx + _ < ε := h₂y + apply le_of_lt apply h₃ε { re := y.re, im := x } simp - have : { re := y.re, im := x } = (x : ℂ) := by - rfl - rw [this] - rw [Complex.abs_ofReal] - exact h₁x + + calc Complex.abs { re := y.re, im := x } + _ ≤ |y.re| + |x| := by + apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x } + _ ≤ 2 * ε := by + linarith calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by @@ -282,14 +311,19 @@ theorem primitive_fderivAtBasepoint simp rw [norm_smul] simp - _ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by + _ ≤ (c / (4 : ℝ)) * |y.re - 0| + (c / (4 : ℝ)) * |y.im - 0| := by apply add_le_add exact t₁ - rfl - _ ≤ c * ‖y‖ := by sorry - - - sorry + exact t₂ + _ ≤ (c / (4 : ℝ)) * (|y.re| + |y.im|) := by + simp + rw [mul_add] + _ ≤ c * ‖y‖ := by + apply mul_le_mul + apply div_le_self + exact le_of_lt hc + linarith + sorry theorem primitive_additivity