nevanlinna/Nevanlinna/holomorphic.primitive.lean

134 lines
5.5 KiB
Plaintext
Raw Normal View History

2024-06-11 17:18:24 +02:00
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
import Mathlib.MeasureTheory.Function.LocallyIntegrable
import Nevanlinna.cauchyRiemann
import Nevanlinna.partialDeriv
2024-06-12 12:30:08 +02:00
theorem MeasureTheory.integral2_divergence₃
2024-06-11 17:18:24 +02:00
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f g : × → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) (x, y)) (1, 0) + ((fderiv g) (x, y)) (0, 1) = (((∫ (x : ) in a₁..b₁, g (x, b₂)) - ∫ (x : ) in a₁..b₁, g (x, a₂)) + ∫ (y : ) in a₂..b₂, f (b₁, y)) - ∫ (y : ) in a₂..b₂, f (a₁, y) := by
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv f) (fderiv g) a₁ a₂ b₁ b₂ ∅
exact Set.countable_empty
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
exact h₁f.continuous.continuousOn
--
exact h₁g.continuous.continuousOn
--
rw [Set.diff_empty]
2024-06-12 12:30:08 +02:00
intro x _
2024-06-11 17:18:24 +02:00
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
--
rw [Set.diff_empty]
2024-06-12 12:30:08 +02:00
intro y _
2024-06-11 17:18:24 +02:00
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
--
apply ContinuousOn.integrableOn_compact
apply IsCompact.prod
exact isCompact_uIcc
exact isCompact_uIcc
apply ContinuousOn.add
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
theorem integral_divergence₄
2024-06-12 12:30:08 +02:00
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
2024-06-11 17:18:24 +02:00
(f g : → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) ⟨x, y⟩ ) 1 + ((fderiv g) ⟨x, y⟩) Complex.I = (((∫ (x : ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ) in a₂..b₂, f ⟨a₁, y⟩ := by
2024-06-12 12:30:08 +02:00
let fr : × → E := f ∘ Complex.equivRealProdCLM.symm
let gr : × → E := g ∘ Complex.equivRealProdCLM.symm
have sfr {x y : } : f { re := x, im := y } = fr (x, y) := by exact rfl
have sgr {x y : } : g { re := x, im := y } = gr (x, y) := by exact rfl
repeat (conv in f { re := _, im := _ } => rw [sfr])
repeat (conv in g { re := _, im := _ } => rw [sgr])
have sfr' {x y : } {z : } : (fderiv f { re := x, im := y }) z = fderiv fr (x, y) (Complex.equivRealProdCLM z) := by
rw [fderiv.comp]
rw [Complex.equivRealProdCLM.symm.fderiv]
tauto
apply Differentiable.differentiableAt
exact h₁f.differentiable le_rfl
exact Complex.equivRealProdCLM.symm.differentiableAt
conv in ⇑(fderiv f { re := _, im := _ }) _ => rw [sfr']
have sgr' {x y : } {z : } : (fderiv g { re := x, im := y }) z = fderiv gr (x, y) (Complex.equivRealProdCLM z) := by
rw [fderiv.comp]
rw [Complex.equivRealProdCLM.symm.fderiv]
tauto
apply Differentiable.differentiableAt
exact h₁g.differentiable le_rfl
exact Complex.equivRealProdCLM.symm.differentiableAt
conv in ⇑(fderiv g { re := _, im := _ }) _ => rw [sgr']
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
-- ContDiff 1 fr
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
-- ContDiff 1 gr
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
theorem integral_divergence₅
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
2024-06-14 10:53:24 +02:00
(F : → E)
2024-06-12 12:30:08 +02:00
(hF : Differentiable F)
2024-06-14 10:53:24 +02:00
(lowerLeft upperRight : ) :
(∫ (x : ) in lowerLeft.re..upperRight.re, F ⟨x, lowerLeft.im⟩) + Complex.I • ∫ (x : ) in lowerLeft.im..upperRight.im, F ⟨upperRight.re, x⟩ =
(∫ (x : ) in lowerLeft.re..upperRight.re, F ⟨x, upperRight.im⟩) + Complex.I • ∫ (x : ) in lowerLeft.im..upperRight.im, F ⟨lowerLeft.re, x⟩ := by
2024-06-12 12:30:08 +02:00
2024-06-12 13:50:29 +02:00
let h₁f : ContDiff 1 F := (hF.contDiff : ContDiff 1 F).restrict_scalars
2024-06-14 10:53:24 +02:00
let h₁g : ContDiff 1 (-Complex.I • F) := by
have : -Complex.I • F = fun x ↦ -Complex.I • F x := by rfl
2024-06-12 13:50:29 +02:00
rw [this]
apply ContDiff.comp
2024-06-14 10:53:24 +02:00
exact contDiff_const_smul _
2024-06-12 13:50:29 +02:00
exact h₁f
2024-06-14 10:53:24 +02:00
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
2024-06-12 12:30:08 +02:00
2024-06-14 10:53:24 +02:00
have {z : } : fderiv F z Complex.I = partialDeriv _ F z := by rfl
conv at A in (fderiv F _) _ => rw [this]
have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv _ (-Complex.I • F) z := by rfl
conv at A in (fderiv (-Complex.I • F) _) _ => rw [this]
2024-06-12 12:30:08 +02:00
conv at A =>
left
arg 1
intro x
arg 1
intro y
2024-06-14 10:53:24 +02:00
rw [CauchyRiemann₄ hF]
2024-06-12 12:30:08 +02:00
rw [partialDeriv_smul'₂]
simp
simp at A
2024-06-14 10:53:24 +02:00
have {t₁ t₂ t₃ t₄ : E} : 0 = (t₁ - t₂) + t₃ + t₄ → t₁ + t₃ = t₂ - t₄ := by
intro hyp
calc
t₁ + t₃ = t₁ + t₃ - 0 := by rw [sub_zero (t₁ + t₃)]
_ = t₁ + t₃ - (t₁ - t₂ + t₃ + t₄) := by rw [hyp]
_ = t₂ - t₄ := by abel
let B := this A
repeat
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
simp at B
exact B