2024-06-11 17:18:24 +02:00
|
|
|
|
import Mathlib.Analysis.Complex.TaylorSeries
|
|
|
|
|
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
|
|
|
|
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
|
|
|
|
import Nevanlinna.cauchyRiemann
|
|
|
|
|
import Nevanlinna.partialDeriv
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
|
|
|
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
|
|
|
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G]
|
|
|
|
|
|
|
|
|
|
noncomputable def Complex.primitive
|
|
|
|
|
(f : ℂ → F) : ℂ → F :=
|
|
|
|
|
fun z ↦ ∫ t : ℝ in (0)..1, z • f (t * z)
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
|
|
|
|
(f : ℝ × ℝ → E)
|
|
|
|
|
(g : ℝ × ℝ → E)
|
|
|
|
|
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
|
|
|
|
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ)
|
|
|
|
|
(s : Set (ℝ × ℝ))
|
|
|
|
|
(hs : s.Countable)
|
|
|
|
|
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
|
|
|
|
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
|
|
|
|
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x)
|
|
|
|
|
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x)
|
|
|
|
|
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
|
|
|
|
exact
|
|
|
|
|
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg
|
|
|
|
|
Hdf Hdg Hi
|
|
|
|
|
|
2024-06-12 12:30:08 +02:00
|
|
|
|
|
2024-06-11 17:18:24 +02:00
|
|
|
|
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
|
|
|
|
(f : ℝ × ℝ → E)
|
|
|
|
|
(g : ℝ × ℝ → E)
|
|
|
|
|
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
|
|
|
|
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ)
|
|
|
|
|
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
|
|
|
|
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
|
|
|
|
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x)
|
|
|
|
|
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x)
|
|
|
|
|
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
|
|
|
|
|
|
|
|
|
apply
|
|
|
|
|
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅
|
|
|
|
|
exact Set.countable_empty
|
|
|
|
|
assumption
|
|
|
|
|
assumption
|
|
|
|
|
rwa [Set.diff_empty]
|
|
|
|
|
rwa [Set.diff_empty]
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
|
2024-06-12 12:30:08 +02:00
|
|
|
|
theorem MeasureTheory.integral2_divergence₃
|
2024-06-11 17:18:24 +02:00
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
|
|
|
|
(f g : ℝ × ℝ → E)
|
|
|
|
|
(h₁f : ContDiff ℝ 1 f)
|
|
|
|
|
(h₁g : ContDiff ℝ 1 g)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
|
|
|
|
|
|
|
|
|
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅
|
|
|
|
|
exact Set.countable_empty
|
|
|
|
|
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
|
|
|
|
|
exact h₁f.continuous.continuousOn
|
|
|
|
|
--
|
|
|
|
|
exact h₁g.continuous.continuousOn
|
|
|
|
|
--
|
|
|
|
|
rw [Set.diff_empty]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
intro x _
|
2024-06-11 17:18:24 +02:00
|
|
|
|
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
|
|
|
|
--
|
|
|
|
|
rw [Set.diff_empty]
|
2024-06-12 12:30:08 +02:00
|
|
|
|
intro y _
|
2024-06-11 17:18:24 +02:00
|
|
|
|
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
|
|
|
|
--
|
|
|
|
|
apply ContinuousOn.integrableOn_compact
|
|
|
|
|
apply IsCompact.prod
|
|
|
|
|
exact isCompact_uIcc
|
|
|
|
|
exact isCompact_uIcc
|
|
|
|
|
apply ContinuousOn.add
|
|
|
|
|
apply Continuous.continuousOn
|
|
|
|
|
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
|
|
|
|
|
apply Continuous.continuousOn
|
|
|
|
|
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem integral_divergence₄
|
2024-06-12 12:30:08 +02:00
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
2024-06-11 17:18:24 +02:00
|
|
|
|
(f g : ℂ → E)
|
|
|
|
|
(h₁f : ContDiff ℝ 1 f)
|
|
|
|
|
(h₁g : ContDiff ℝ 1 g)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ) :
|
|
|
|
|
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by
|
|
|
|
|
|
2024-06-12 12:30:08 +02:00
|
|
|
|
let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm
|
|
|
|
|
let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm
|
|
|
|
|
|
|
|
|
|
have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl
|
|
|
|
|
have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl
|
|
|
|
|
repeat (conv in f { re := _, im := _ } => rw [sfr])
|
|
|
|
|
repeat (conv in g { re := _, im := _ } => rw [sgr])
|
|
|
|
|
|
|
|
|
|
have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by
|
|
|
|
|
rw [fderiv.comp]
|
|
|
|
|
rw [Complex.equivRealProdCLM.symm.fderiv]
|
|
|
|
|
tauto
|
|
|
|
|
apply Differentiable.differentiableAt
|
|
|
|
|
exact h₁f.differentiable le_rfl
|
|
|
|
|
exact Complex.equivRealProdCLM.symm.differentiableAt
|
|
|
|
|
conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr']
|
|
|
|
|
|
|
|
|
|
have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by
|
|
|
|
|
rw [fderiv.comp]
|
|
|
|
|
rw [Complex.equivRealProdCLM.symm.fderiv]
|
|
|
|
|
tauto
|
|
|
|
|
apply Differentiable.differentiableAt
|
|
|
|
|
exact h₁g.differentiable le_rfl
|
|
|
|
|
exact Complex.equivRealProdCLM.symm.differentiableAt
|
|
|
|
|
conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr']
|
|
|
|
|
|
|
|
|
|
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
|
|
|
|
|
-- ContDiff ℝ 1 fr
|
|
|
|
|
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
|
|
|
|
|
-- ContDiff ℝ 1 gr
|
|
|
|
|
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem integral_divergence₅
|
|
|
|
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
|
|
|
|
(F : ℂ → ℂ)
|
|
|
|
|
(hF : Differentiable ℂ F)
|
|
|
|
|
(a₁ : ℝ)
|
|
|
|
|
(a₂ : ℝ)
|
|
|
|
|
(b₁ : ℝ)
|
|
|
|
|
(b₂ : ℝ) :
|
|
|
|
|
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := b₂ }) +
|
|
|
|
|
(∫ (y : ℝ) in a₂..b₂, F { re := b₁, im := y })
|
|
|
|
|
=
|
|
|
|
|
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := a₂ }) +
|
|
|
|
|
(∫ (y : ℝ) in a₂..b₂, F { re := a₁, im := y }) := by
|
|
|
|
|
|
|
|
|
|
let f := F
|
|
|
|
|
let h₁f : ContDiff ℝ 1 f := by sorry
|
|
|
|
|
let g := Complex.I • F
|
|
|
|
|
let h₁g : ContDiff ℝ 1 g := by sorry
|
|
|
|
|
|
|
|
|
|
let A := integral_divergence₄ f g h₁f h₁g a₁ a₂ b₁ b₂
|
|
|
|
|
|
|
|
|
|
have {z : ℂ} : fderiv ℝ f z 1 = partialDeriv ℝ 1 f z := by rfl
|
|
|
|
|
conv at A in (fderiv ℝ f _) 1 => rw [this]
|
|
|
|
|
have {z : ℂ} : fderiv ℝ g z Complex.I = partialDeriv ℝ Complex.I g z := by rfl
|
|
|
|
|
conv at A in (fderiv ℝ g _) Complex.I => rw [this]
|
|
|
|
|
|
|
|
|
|
have : Differentiable ℂ g := by sorry
|
|
|
|
|
conv at A =>
|
|
|
|
|
left
|
|
|
|
|
arg 1
|
|
|
|
|
intro x
|
|
|
|
|
arg 1
|
|
|
|
|
intro y
|
|
|
|
|
rw [CauchyRiemann₄ this]
|
|
|
|
|
rw [partialDeriv_smul'₂]
|
|
|
|
|
rw [← smul_assoc]
|
|
|
|
|
simp
|
|
|
|
|
simp at A
|
|
|
|
|
|
|
|
|
|
sorry
|