190 lines
8.0 KiB
Plaintext
190 lines
8.0 KiB
Plaintext
import Mathlib.Analysis.Complex.TaylorSeries
|
||
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||
import Nevanlinna.cauchyRiemann
|
||
import Nevanlinna.partialDeriv
|
||
|
||
/-
|
||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G]
|
||
|
||
noncomputable def Complex.primitive
|
||
(f : ℂ → F) : ℂ → F :=
|
||
fun z ↦ ∫ t : ℝ in (0)..1, z • f (t * z)
|
||
-/
|
||
|
||
|
||
|
||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₁
|
||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||
(f : ℝ × ℝ → E)
|
||
(g : ℝ × ℝ → E)
|
||
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||
(a₁ : ℝ)
|
||
(a₂ : ℝ)
|
||
(b₁ : ℝ)
|
||
(b₂ : ℝ)
|
||
(s : Set (ℝ × ℝ))
|
||
(hs : s.Countable)
|
||
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt f (f' x) x)
|
||
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂) \ s, HasFDerivAt g (g' x) x)
|
||
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||
exact
|
||
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ s hs Hcf Hcg
|
||
Hdf Hdg Hi
|
||
|
||
|
||
theorem MeasureTheory.integral2_divergence_prod_of_hasFDerivWithinAt_off_countable₂
|
||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||
(f : ℝ × ℝ → E)
|
||
(g : ℝ × ℝ → E)
|
||
(f' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||
(g' : ℝ × ℝ → ℝ × ℝ →L[ℝ] E)
|
||
(a₁ : ℝ)
|
||
(a₂ : ℝ)
|
||
(b₁ : ℝ)
|
||
(b₂ : ℝ)
|
||
(Hcf : ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||
(Hcg : ContinuousOn g (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂))
|
||
(Hdf : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt f (f' x) x)
|
||
(Hdg : ∀ x ∈ Set.Ioo (min a₁ b₁) (max a₁ b₁) ×ˢ Set.Ioo (min a₂ b₂) (max a₂ b₂), HasFDerivAt g (g' x) x)
|
||
(Hi : MeasureTheory.IntegrableOn (fun (x : ℝ × ℝ) => (f' x) (1, 0) + (g' x) (0, 1)) (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂) MeasureTheory.volume) :
|
||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, (f' (x, y)) (1, 0) + (g' (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||
|
||
apply
|
||
integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g f' g' a₁ a₂ b₁ b₂ ∅
|
||
exact Set.countable_empty
|
||
assumption
|
||
assumption
|
||
rwa [Set.diff_empty]
|
||
rwa [Set.diff_empty]
|
||
assumption
|
||
|
||
|
||
theorem MeasureTheory.integral2_divergence₃
|
||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||
(f g : ℝ × ℝ → E)
|
||
(h₁f : ContDiff ℝ 1 f)
|
||
(h₁g : ContDiff ℝ 1 g)
|
||
(a₁ : ℝ)
|
||
(a₂ : ℝ)
|
||
(b₁ : ℝ)
|
||
(b₂ : ℝ) :
|
||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) (x, y)) (1, 0) + ((fderiv ℝ g) (x, y)) (0, 1) = (((∫ (x : ℝ) in a₁..b₁, g (x, b₂)) - ∫ (x : ℝ) in a₁..b₁, g (x, a₂)) + ∫ (y : ℝ) in a₂..b₂, f (b₁, y)) - ∫ (y : ℝ) in a₂..b₂, f (a₁, y) := by
|
||
|
||
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv ℝ f) (fderiv ℝ g) a₁ a₂ b₁ b₂ ∅
|
||
exact Set.countable_empty
|
||
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
|
||
exact h₁f.continuous.continuousOn
|
||
--
|
||
exact h₁g.continuous.continuousOn
|
||
--
|
||
rw [Set.diff_empty]
|
||
intro x _
|
||
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
|
||
--
|
||
rw [Set.diff_empty]
|
||
intro y _
|
||
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
|
||
--
|
||
apply ContinuousOn.integrableOn_compact
|
||
apply IsCompact.prod
|
||
exact isCompact_uIcc
|
||
exact isCompact_uIcc
|
||
apply ContinuousOn.add
|
||
apply Continuous.continuousOn
|
||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
|
||
apply Continuous.continuousOn
|
||
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
|
||
|
||
|
||
theorem integral_divergence₄
|
||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||
(f g : ℂ → E)
|
||
(h₁f : ContDiff ℝ 1 f)
|
||
(h₁g : ContDiff ℝ 1 g)
|
||
(a₁ : ℝ)
|
||
(a₂ : ℝ)
|
||
(b₁ : ℝ)
|
||
(b₂ : ℝ) :
|
||
∫ (x : ℝ) in a₁..b₁, ∫ (y : ℝ) in a₂..b₂, ((fderiv ℝ f) ⟨x, y⟩ ) 1 + ((fderiv ℝ g) ⟨x, y⟩) Complex.I = (((∫ (x : ℝ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ℝ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ℝ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ℝ) in a₂..b₂, f ⟨a₁, y⟩ := by
|
||
|
||
let fr : ℝ × ℝ → E := f ∘ Complex.equivRealProdCLM.symm
|
||
let gr : ℝ × ℝ → E := g ∘ Complex.equivRealProdCLM.symm
|
||
|
||
have sfr {x y : ℝ} : f { re := x, im := y } = fr (x, y) := by exact rfl
|
||
have sgr {x y : ℝ} : g { re := x, im := y } = gr (x, y) := by exact rfl
|
||
repeat (conv in f { re := _, im := _ } => rw [sfr])
|
||
repeat (conv in g { re := _, im := _ } => rw [sgr])
|
||
|
||
have sfr' {x y : ℝ} {z : ℂ} : (fderiv ℝ f { re := x, im := y }) z = fderiv ℝ fr (x, y) (Complex.equivRealProdCLM z) := by
|
||
rw [fderiv.comp]
|
||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||
tauto
|
||
apply Differentiable.differentiableAt
|
||
exact h₁f.differentiable le_rfl
|
||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||
conv in ⇑(fderiv ℝ f { re := _, im := _ }) _ => rw [sfr']
|
||
|
||
have sgr' {x y : ℝ} {z : ℂ} : (fderiv ℝ g { re := x, im := y }) z = fderiv ℝ gr (x, y) (Complex.equivRealProdCLM z) := by
|
||
rw [fderiv.comp]
|
||
rw [Complex.equivRealProdCLM.symm.fderiv]
|
||
tauto
|
||
apply Differentiable.differentiableAt
|
||
exact h₁g.differentiable le_rfl
|
||
exact Complex.equivRealProdCLM.symm.differentiableAt
|
||
conv in ⇑(fderiv ℝ g { re := _, im := _ }) _ => rw [sgr']
|
||
|
||
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
|
||
-- ContDiff ℝ 1 fr
|
||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
|
||
-- ContDiff ℝ 1 gr
|
||
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
|
||
|
||
|
||
theorem integral_divergence₅
|
||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||
(F : ℂ → ℂ)
|
||
(hF : Differentiable ℂ F)
|
||
(a₁ : ℝ)
|
||
(a₂ : ℝ)
|
||
(b₁ : ℝ)
|
||
(b₂ : ℝ) :
|
||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := b₂ }) +
|
||
(∫ (y : ℝ) in a₂..b₂, F { re := b₁, im := y })
|
||
=
|
||
(∫ (x : ℝ) in a₁..b₁, Complex.I • F { re := x, im := a₂ }) +
|
||
(∫ (y : ℝ) in a₂..b₂, F { re := a₁, im := y }) := by
|
||
|
||
let f := F
|
||
let h₁f : ContDiff ℝ 1 f := by sorry
|
||
let g := Complex.I • F
|
||
let h₁g : ContDiff ℝ 1 g := by sorry
|
||
|
||
let A := integral_divergence₄ f g h₁f h₁g a₁ a₂ b₁ b₂
|
||
|
||
have {z : ℂ} : fderiv ℝ f z 1 = partialDeriv ℝ 1 f z := by rfl
|
||
conv at A in (fderiv ℝ f _) 1 => rw [this]
|
||
have {z : ℂ} : fderiv ℝ g z Complex.I = partialDeriv ℝ Complex.I g z := by rfl
|
||
conv at A in (fderiv ℝ g _) Complex.I => rw [this]
|
||
|
||
have : Differentiable ℂ g := by sorry
|
||
conv at A =>
|
||
left
|
||
arg 1
|
||
intro x
|
||
arg 1
|
||
intro y
|
||
rw [CauchyRiemann₄ this]
|
||
rw [partialDeriv_smul'₂]
|
||
rw [← smul_assoc]
|
||
simp
|
||
simp at A
|
||
|
||
sorry
|