nevanlinna/Nevanlinna/stronglyMeromorphicAt.lean

438 lines
13 KiB
Plaintext
Raw Normal View History

2024-10-08 09:35:17 +02:00
import Mathlib.Analysis.Analytic.Meromorphic
2024-11-14 13:47:24 +01:00
import Mathlib.Algebra.Order.AddGroupWithTop
2024-10-08 09:35:17 +02:00
import Nevanlinna.analyticAt
2024-10-09 12:13:22 +02:00
import Nevanlinna.mathlibAddOn
2024-11-11 16:50:49 +01:00
import Nevanlinna.meromorphicAt
2024-10-08 09:35:17 +02:00
2024-10-08 15:39:19 +02:00
2024-10-23 13:03:41 +02:00
open Topology
2024-10-08 15:39:19 +02:00
/- Strongly MeromorphicAt -/
2024-10-08 09:35:17 +02:00
def StronglyMeromorphicAt
(f : )
(z₀ : ) :=
2024-10-08 15:39:19 +02:00
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
2024-10-08 09:35:17 +02:00
2024-11-11 16:50:49 +01:00
2024-10-08 15:39:19 +02:00
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
MeromorphicAt f z₀ := by
rcases hf with h|h
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
2024-10-09 12:13:22 +02:00
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
rw [meromorphicAt_congr' h₃g]
apply MeromorphicAt.smul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
exact AnalyticAt.meromorphicAt h₁g
2024-10-08 15:39:19 +02:00
2024-10-09 06:33:14 +02:00
2024-10-09 12:13:22 +02:00
/- Strongly MeromorphicAt of non-negative order is analytic -/
2024-10-08 15:39:19 +02:00
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
2024-10-09 12:13:22 +02:00
let h₁f' := h₁f
rcases h₁f' with h|h
· rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
rw [analyticAt_congr h₃g]
have : h₁f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff]
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
rw [this] at h₂f
apply AnalyticAt.smul
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id -- Warning: want apply AnalyticAt.id
apply analyticAt_const -- Warning: want AnalyticAt.const
exact h₁g
2024-10-08 15:39:19 +02:00
2024-10-14 13:41:05 +02:00
/- Analytic functions are strongly meromorphic -/
theorem AnalyticAt.stronglyMeromorphicAt
{f : }
{z₀ : }
(h₁f : AnalyticAt f z₀) :
StronglyMeromorphicAt f z₀ := by
by_cases h₂f : h₁f.order =
· rw [AnalyticAt.order_eq_top_iff] at h₂f
tauto
· have : h₁f.order ≠ := h₂f
rw [← ENat.coe_toNat_eq_self] at this
rw [eq_comm, AnalyticAt.order_eq_nat_iff] at this
right
use h₁f.order.toNat
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
use g
tauto
2024-10-30 16:53:32 +01:00
/- Strong meromorphic depends only on germ -/
theorem stronglyMeromorphicAt_congr
{f g : }
{z₀ : }
(hfg : f =ᶠ[𝓝 z₀] g) :
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt g z₀ := by
unfold StronglyMeromorphicAt
constructor
· intro h
rcases h with h|h
· left
exact Filter.EventuallyEq.rw h (fun x => Eq (g x)) (id (Filter.EventuallyEq.symm hfg))
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
right
use n
use h
constructor
· assumption
· constructor
· assumption
· apply Filter.EventuallyEq.trans hfg.symm
assumption
· intro h
rcases h with h|h
· left
exact Filter.EventuallyEq.rw h (fun x => Eq (f x)) hfg
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
right
use n
use h
constructor
· assumption
· constructor
· assumption
· apply Filter.EventuallyEq.trans hfg
assumption
2024-11-11 16:50:49 +01:00
theorem StronglyMeromorphicAt.order_eq_zero_iff
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
2024-11-12 16:49:07 +01:00
constructor
· intro h₁f
let A := hf.analytic (le_of_eq (id (Eq.symm h₁f)))
apply A.order_eq_zero_iff.1
let B := A.meromorphicAt_order
rw [h₁f] at B
apply WithTopCoe
rw [eq_comm]
exact B
· intro h
have hf' := hf
rcases hf with h₁|h₁
· have : f z₀ = 0 := by
apply Filter.EventuallyEq.eq_of_nhds h₁
tauto
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁
have : n = 0 := by
by_contra hContra
let A := Filter.EventuallyEq.eq_of_nhds h₃g
have : (0 : ) ^ n = 0 := by
exact zero_zpow n hContra
simp at A
simp_rw [this] at A
simp at A
tauto
rw [this] at h₃g
simp at h₃g
have : hf'.meromorphicAt.order = 0 := by
apply (hf'.meromorphicAt.order_eq_int_iff 0).2
use g
constructor
· assumption
· constructor
· assumption
· simp
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact this
2024-11-11 16:50:49 +01:00
2024-11-12 16:58:07 +01:00
2024-11-11 16:50:49 +01:00
theorem StronglyMeromorphicAt.localIdentity
{f g : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀)
(hg : StronglyMeromorphicAt g z₀) :
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
intro h
have t₀ : hf.meromorphicAt.order = hg.meromorphicAt.order := by
exact hf.meromorphicAt.order_congr h
by_cases cs : hf.meromorphicAt.order = 0
· rw [cs] at t₀
have h₁f := hf.analytic (le_of_eq (id (Eq.symm cs)))
have h₁g := hg.analytic (le_of_eq t₀)
exact h₁f.localIdentity h₁g h
· apply Mnhds h
let A := cs
rw [hf.order_eq_zero_iff] at A
simp at A
let B := cs
rw [t₀] at B
rw [hg.order_eq_zero_iff] at B
simp at B
rw [A, B]
2024-10-08 15:39:19 +02:00
/- Make strongly MeromorphicAt -/
2024-10-14 13:25:49 +02:00
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
2024-10-08 09:35:17 +02:00
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
2024-10-21 10:36:48 +02:00
intro z
by_cases z = z₀
2024-10-22 17:12:59 +02:00
· by_cases h₁f : hf.order = (0 : )
· rw [hf.order_eq_int_iff] at h₁f
exact (Classical.choose h₁f) z₀
2024-10-21 10:36:48 +02:00
· exact 0
· exact f z
2024-10-08 09:35:17 +02:00
2024-10-24 13:49:58 +02:00
2024-10-22 17:12:59 +02:00
lemma m₁
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
intro z hz
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [hz]
2024-10-24 13:49:58 +02:00
2024-10-22 17:12:59 +02:00
lemma m₂
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
2024-10-23 13:03:41 +02:00
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
2024-10-22 17:12:59 +02:00
apply eventually_nhdsWithin_of_forall
exact fun x a => m₁ hf x a
2024-10-24 13:12:03 +02:00
2024-10-08 15:39:19 +02:00
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
2024-10-08 09:35:17 +02:00
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
2024-10-21 10:36:48 +02:00
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
2024-10-22 17:12:59 +02:00
by_cases h₂f : hf.order =
2024-10-23 13:03:41 +02:00
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
2024-10-22 17:12:59 +02:00
apply Mnhds
2024-10-23 13:03:41 +02:00
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [h₂f]
2024-10-22 17:12:59 +02:00
apply AnalyticAt.stronglyMeromorphicAt
rw [analyticAt_congr this]
apply analyticAt_const
2024-10-23 13:03:41 +02:00
· let n := hf.order.untop h₂f
have : hf.order = n := by
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
rw [hf.order_eq_int_iff] at this
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
right
use n
use g
constructor
· assumption
· constructor
· assumption
· apply Mnhds
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact h₃g
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp
2024-10-23 13:31:22 +02:00
by_cases h₃f : hf.order = (0 : )
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
simp [h₃f]
2024-10-24 12:50:08 +02:00
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
simp at h₃G
2024-10-24 13:12:03 +02:00
have hn : n = 0 := Eq.symm ((fun {α} {a} {b} h => (WithTop.eq_untop_iff h).mpr) h₂f (id (Eq.symm h₃f)))
2024-10-24 12:50:08 +02:00
rw [hn]
2024-10-24 13:12:03 +02:00
rw [hn] at h₃g; simp at h₃g
2024-10-24 12:50:08 +02:00
simp
2024-10-24 13:46:27 +02:00
have : g =ᶠ[𝓝 z₀] (Classical.choose h₄f) := by
2024-11-11 16:50:49 +01:00
apply h₁g.localIdentity h₁G
2024-10-24 13:12:03 +02:00
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₃g) h₃G
2024-10-24 12:50:08 +02:00
rw [Filter.EventuallyEq.eq_of_nhds this]
· have : hf.order ≠ 0 := h₃f
simp [this]
2024-10-23 13:03:41 +02:00
left
apply zero_zpow n
dsimp [n]
rwa [WithTop.untop_eq_iff h₂f]
2024-10-24 16:05:44 +02:00
2024-11-19 11:31:24 +01:00
theorem StronglyMeromorphicAt.makeStronglyMeromorphic_id
2024-10-24 16:05:44 +02:00
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
f = hf.meromorphicAt.makeStronglyMeromorphicAt := by
funext z
by_cases hz : z = z₀
· rw [hz]
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp
2024-11-07 12:08:52 +01:00
have h₀f := hf
2024-10-24 16:05:44 +02:00
rcases hf with h₁f|h₁f
· have A : f =ᶠ[𝓝[≠] z₀] 0 := by
apply Filter.EventuallyEq.filter_mono h₁f
exact nhdsWithin_le_nhds
let B := (MeromorphicAt.order_eq_top_iff h₀f.meromorphicAt).2 A
simp [B]
exact Filter.EventuallyEq.eq_of_nhds h₁f
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁f
2024-10-25 14:14:07 +02:00
rw [Filter.EventuallyEq.eq_of_nhds h₃g]
have : h₀f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff (StronglyMeromorphicAt.meromorphicAt h₀f) n]
use g
constructor
· assumption
· constructor
· assumption
· exact eventually_nhdsWithin_of_eventually_nhds h₃g
2024-10-24 16:05:44 +02:00
by_cases h₃f : h₀f.meromorphicAt.order = 0
· simp [h₃f]
2024-10-25 14:14:07 +02:00
have hn : n = (0 : ) := by
rw [h₃f] at this
exact WithTop.coe_eq_zero.mp (id (Eq.symm this))
simp_rw [hn]
simp
let t₀ : h₀f.meromorphicAt.order = (0 : ) := by
exact h₃f
let A := (h₀f.meromorphicAt.order_eq_int_iff 0).1 t₀
have : g =ᶠ[𝓝 z₀] (Classical.choose A) := by
obtain ⟨h₀, h₁, h₂⟩ := Classical.choose_spec A
2024-11-11 16:50:49 +01:00
apply h₁g.localIdentity h₀
2024-10-25 14:14:07 +02:00
rw [hn] at h₃g
simp at h₃g
simp at h₂
have h₄g : f =ᶠ[𝓝[≠] z₀] g := by
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₄g) h₂
exact Filter.EventuallyEq.eq_of_nhds this
2024-10-24 16:05:44 +02:00
· simp [h₃f]
2024-10-25 14:14:07 +02:00
left
apply zero_zpow n
by_contra hn
rw [hn] at this
tauto
2024-10-24 16:05:44 +02:00
· exact m₁ (StronglyMeromorphicAt.meromorphicAt hf) z hz
2024-11-14 13:47:24 +01:00
2024-11-14 16:18:32 +01:00
theorem StronglyMeromorphicAt.eliminate
2024-11-14 13:47:24 +01:00
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : h₁f.meromorphicAt.order ≠ ) :
∃ g : , (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = (fun z ↦ (z-z₀) ^ (h₁f.meromorphicAt.order.untop h₂f)) * g) := by
let g₁ := (fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)) * f
let g₁₁ := fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)
have h₁g₁₁ : MeromorphicAt g₁₁ z₀ := by
apply MeromorphicAt.zpow
apply AnalyticAt.meromorphicAt
apply AnalyticAt.sub
apply analyticAt_id
exact analyticAt_const
have h₂g₁₁ : h₁g₁₁.order = - h₁f.meromorphicAt.order.untop h₂f := by
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [h₁g₁₁.order_eq_int_iff]
use 1
constructor
· exact analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
simp [g₁₁]
have h₁g₁ : MeromorphicAt g₁ z₀ := h₁g₁₁.mul h₁f.meromorphicAt
have h₂g₁ : h₁g₁.order = 0 := by
rw [h₁g₁₁.order_mul h₁f.meromorphicAt]
rw [h₂g₁₁]
simp
rw [add_comm]
rw [LinearOrderedAddCommGroupWithTop.add_neg_cancel_of_ne_top h₂f]
let g := h₁g₁.makeStronglyMeromorphicAt
use g
have h₁g : StronglyMeromorphicAt g z₀ := by
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic h₁g₁
have h₂g : h₁g.meromorphicAt.order = 0 := by
2024-11-14 14:08:06 +01:00
rw [← h₁g₁.order_congr (m₂ h₁g₁)]
exact h₂g₁
2024-11-14 13:47:24 +01:00
constructor
· apply analytic
2024-11-14 14:08:06 +01:00
· rw [h₂g]
2024-11-14 13:47:24 +01:00
· exact h₁g
· constructor
2024-11-14 15:32:19 +01:00
· rwa [← h₁g.order_eq_zero_iff]
· funext z
by_cases hz : z = z₀
· by_cases hOrd : h₁f.meromorphicAt.order.untop h₂f = 0
· simp [hOrd]
have : StronglyMeromorphicAt g₁ z₀ := by
unfold g₁
simp [hOrd]
have : (fun z => 1) * f = f := by
funext z
simp
rwa [this]
rw [hz]
unfold g
let A := makeStronglyMeromorphic_id this
rw [← A]
unfold g₁
rw [hOrd]
simp
· have : h₁f.meromorphicAt.order ≠ 0 := by
by_contra hC
simp_rw [hC] at hOrd
tauto
let A := h₁f.order_eq_zero_iff.not.1 this
simp at A
rw [hz, A]
simp
left
rw [zpow_eq_zero_iff]
assumption
· simp
have : g z = g₁ z := by
exact Eq.symm (m₁ h₁g₁ z hz)
rw [this]
unfold g₁
simp [hz]
rw [← mul_assoc]
rw [mul_inv_cancel₀]
simp
apply zpow_ne_zero
exact sub_ne_zero_of_ne hz