2024-10-08 09:35:17 +02:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
/- Strongly MeromorphicAt -/
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
def StronglyMeromorphicAt
|
|
|
|
|
(f : ℂ → ℂ)
|
|
|
|
|
(z₀ : ℂ) :=
|
2024-10-08 15:39:19 +02:00
|
|
|
|
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Strongly MeromorphicAt is Meromorphic -/
|
|
|
|
|
theorem StronglyMeromorphicAt.meromorphicAt
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : StronglyMeromorphicAt f z₀) :
|
|
|
|
|
MeromorphicAt f z₀ := by
|
|
|
|
|
rcases hf with h|h
|
|
|
|
|
· use 0; simp
|
|
|
|
|
rw [analyticAt_congr h]
|
|
|
|
|
exact analyticAt_const
|
|
|
|
|
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
|
|
|
|
have : MeromorphicAt (fun z ↦ (z - z₀) ^ n • g z) z₀ := by
|
|
|
|
|
simp
|
|
|
|
|
apply MeromorphicAt.mul
|
|
|
|
|
apply MeromorphicAt.zpow
|
|
|
|
|
apply MeromorphicAt.sub
|
|
|
|
|
|
|
|
|
|
sorry
|
|
|
|
|
apply MeromorphicAt.congr this
|
|
|
|
|
rw [Filter.eventuallyEq_comm]
|
|
|
|
|
exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
|
|
|
|
|
2024-10-09 06:33:14 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Strongly MeromorphicAt of positive order is analytic -/
|
|
|
|
|
theorem StronglyMeromorphicAt.analytic
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(h₁f : StronglyMeromorphicAt f z₀)
|
|
|
|
|
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
|
|
|
|
AnalyticAt ℂ f z₀ := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Make strongly MeromorphicAt -/
|
|
|
|
|
|
|
|
|
|
def MeromorphicAt.makeStronglyMeromorphicAt
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
ℂ → ℂ := by
|
|
|
|
|
exact 0
|
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
|
|
|
|
|
sorry
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem makeStronglyMeromorphic_eventuallyEq
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
|
|
|
|
|
sorry
|