2024-10-08 09:35:17 +02:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
2024-10-09 12:13:22 +02:00
|
|
|
|
import Nevanlinna.mathlibAddOn
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
/- Strongly MeromorphicAt -/
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
def StronglyMeromorphicAt
|
|
|
|
|
(f : ℂ → ℂ)
|
|
|
|
|
(z₀ : ℂ) :=
|
2024-10-08 15:39:19 +02:00
|
|
|
|
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Strongly MeromorphicAt is Meromorphic -/
|
|
|
|
|
theorem StronglyMeromorphicAt.meromorphicAt
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : StronglyMeromorphicAt f z₀) :
|
|
|
|
|
MeromorphicAt f z₀ := by
|
|
|
|
|
rcases hf with h|h
|
|
|
|
|
· use 0; simp
|
|
|
|
|
rw [analyticAt_congr h]
|
|
|
|
|
exact analyticAt_const
|
2024-10-09 12:13:22 +02:00
|
|
|
|
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
|
|
|
|
|
rw [meromorphicAt_congr' h₃g]
|
|
|
|
|
apply MeromorphicAt.smul
|
|
|
|
|
apply MeromorphicAt.zpow
|
|
|
|
|
apply MeromorphicAt.sub
|
|
|
|
|
apply MeromorphicAt.id
|
|
|
|
|
apply MeromorphicAt.const
|
|
|
|
|
exact AnalyticAt.meromorphicAt h₁g
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
2024-10-09 06:33:14 +02:00
|
|
|
|
|
2024-10-09 12:13:22 +02:00
|
|
|
|
/- Strongly MeromorphicAt of non-negative order is analytic -/
|
2024-10-08 15:39:19 +02:00
|
|
|
|
theorem StronglyMeromorphicAt.analytic
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(h₁f : StronglyMeromorphicAt f z₀)
|
|
|
|
|
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
|
|
|
|
AnalyticAt ℂ f z₀ := by
|
2024-10-09 12:13:22 +02:00
|
|
|
|
let h₁f' := h₁f
|
|
|
|
|
rcases h₁f' with h|h
|
|
|
|
|
· rw [analyticAt_congr h]
|
|
|
|
|
exact analyticAt_const
|
|
|
|
|
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
|
|
|
|
rw [analyticAt_congr h₃g]
|
|
|
|
|
|
|
|
|
|
have : h₁f.meromorphicAt.order = n := by
|
|
|
|
|
rw [MeromorphicAt.order_eq_int_iff]
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
· exact h₁g
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂g
|
|
|
|
|
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
|
|
|
|
rw [this] at h₂f
|
|
|
|
|
apply AnalyticAt.smul
|
|
|
|
|
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
|
|
|
|
|
apply AnalyticAt.pow
|
|
|
|
|
apply AnalyticAt.sub
|
|
|
|
|
apply analyticAt_id -- Warning: want apply AnalyticAt.id
|
|
|
|
|
apply analyticAt_const -- Warning: want AnalyticAt.const
|
|
|
|
|
exact h₁g
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/- Make strongly MeromorphicAt -/
|
|
|
|
|
|
|
|
|
|
def MeromorphicAt.makeStronglyMeromorphicAt
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
ℂ → ℂ := by
|
2024-10-09 12:13:22 +02:00
|
|
|
|
by_cases h₂f : hf.order = ⊤
|
|
|
|
|
· exact 0
|
|
|
|
|
· have : ∃ n : ℤ, hf.order = n := by
|
|
|
|
|
exact Option.ne_none_iff_exists'.mp h₂f
|
|
|
|
|
|
|
|
|
|
let o := hf.order.untop h₂f
|
|
|
|
|
have : hf.order = o := by
|
|
|
|
|
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
|
|
|
|
|
rw [MeromorphicAt.order_eq_int_iff] at this
|
|
|
|
|
obtain ⟨g, hg⟩ := this
|
|
|
|
|
exact fun z ↦ (z - z₀) ^ o • g z
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
|
|
|
|
|
sorry
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem makeStronglyMeromorphic_eventuallyEq
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
|
|
|
|
|
sorry
|