nevanlinna/Nevanlinna/stronglyMeromorphic.lean

104 lines
2.9 KiB
Plaintext
Raw Normal View History

2024-10-08 09:35:17 +02:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
2024-10-09 12:13:22 +02:00
import Nevanlinna.mathlibAddOn
2024-10-08 09:35:17 +02:00
2024-10-08 15:39:19 +02:00
/- Strongly MeromorphicAt -/
2024-10-08 09:35:17 +02:00
def StronglyMeromorphicAt
(f : )
(z₀ : ) :=
2024-10-08 15:39:19 +02:00
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
2024-10-08 09:35:17 +02:00
2024-10-08 15:39:19 +02:00
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
MeromorphicAt f z₀ := by
rcases hf with h|h
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
2024-10-09 12:13:22 +02:00
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
rw [meromorphicAt_congr' h₃g]
apply MeromorphicAt.smul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
exact AnalyticAt.meromorphicAt h₁g
2024-10-08 15:39:19 +02:00
2024-10-09 06:33:14 +02:00
2024-10-09 12:13:22 +02:00
/- Strongly MeromorphicAt of non-negative order is analytic -/
2024-10-08 15:39:19 +02:00
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
2024-10-09 12:13:22 +02:00
let h₁f' := h₁f
rcases h₁f' with h|h
· rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
rw [analyticAt_congr h₃g]
have : h₁f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff]
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
rw [this] at h₂f
apply AnalyticAt.smul
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id -- Warning: want apply AnalyticAt.id
apply analyticAt_const -- Warning: want AnalyticAt.const
exact h₁g
2024-10-08 15:39:19 +02:00
/- Make strongly MeromorphicAt -/
def MeromorphicAt.makeStronglyMeromorphicAt
2024-10-08 09:35:17 +02:00
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
2024-10-09 12:13:22 +02:00
by_cases h₂f : hf.order =
· exact 0
· have : ∃ n : , hf.order = n := by
exact Option.ne_none_iff_exists'.mp h₂f
let o := hf.order.untop h₂f
have : hf.order = o := by
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
rw [MeromorphicAt.order_eq_int_iff] at this
obtain ⟨g, hg⟩ := this
exact fun z ↦ (z - z₀) ^ o • g z
sorry
2024-10-08 09:35:17 +02:00
2024-10-08 15:39:19 +02:00
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
2024-10-08 09:35:17 +02:00
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
sorry
2024-10-08 15:39:19 +02:00
theorem makeStronglyMeromorphic_eventuallyEq
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
sorry