2024-10-08 09:35:17 +02:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
2024-10-09 12:13:22 +02:00
|
|
|
|
import Nevanlinna.mathlibAddOn
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
2024-10-23 13:03:41 +02:00
|
|
|
|
open Topology
|
|
|
|
|
|
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Strongly MeromorphicAt -/
|
2024-10-08 09:35:17 +02:00
|
|
|
|
def StronglyMeromorphicAt
|
|
|
|
|
(f : ℂ → ℂ)
|
|
|
|
|
(z₀ : ℂ) :=
|
2024-10-08 15:39:19 +02:00
|
|
|
|
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
|
|
|
|
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Strongly MeromorphicAt is Meromorphic -/
|
|
|
|
|
theorem StronglyMeromorphicAt.meromorphicAt
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : StronglyMeromorphicAt f z₀) :
|
|
|
|
|
MeromorphicAt f z₀ := by
|
|
|
|
|
rcases hf with h|h
|
|
|
|
|
· use 0; simp
|
|
|
|
|
rw [analyticAt_congr h]
|
|
|
|
|
exact analyticAt_const
|
2024-10-09 12:13:22 +02:00
|
|
|
|
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
|
|
|
|
|
rw [meromorphicAt_congr' h₃g]
|
|
|
|
|
apply MeromorphicAt.smul
|
|
|
|
|
apply MeromorphicAt.zpow
|
|
|
|
|
apply MeromorphicAt.sub
|
|
|
|
|
apply MeromorphicAt.id
|
|
|
|
|
apply MeromorphicAt.const
|
|
|
|
|
exact AnalyticAt.meromorphicAt h₁g
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
2024-10-09 06:33:14 +02:00
|
|
|
|
|
2024-10-09 12:13:22 +02:00
|
|
|
|
/- Strongly MeromorphicAt of non-negative order is analytic -/
|
2024-10-08 15:39:19 +02:00
|
|
|
|
theorem StronglyMeromorphicAt.analytic
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(h₁f : StronglyMeromorphicAt f z₀)
|
|
|
|
|
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
|
|
|
|
AnalyticAt ℂ f z₀ := by
|
2024-10-09 12:13:22 +02:00
|
|
|
|
let h₁f' := h₁f
|
|
|
|
|
rcases h₁f' with h|h
|
|
|
|
|
· rw [analyticAt_congr h]
|
|
|
|
|
exact analyticAt_const
|
|
|
|
|
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
|
|
|
|
rw [analyticAt_congr h₃g]
|
|
|
|
|
|
|
|
|
|
have : h₁f.meromorphicAt.order = n := by
|
|
|
|
|
rw [MeromorphicAt.order_eq_int_iff]
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
· exact h₁g
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂g
|
|
|
|
|
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
|
|
|
|
rw [this] at h₂f
|
|
|
|
|
apply AnalyticAt.smul
|
|
|
|
|
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
|
|
|
|
|
apply AnalyticAt.pow
|
|
|
|
|
apply AnalyticAt.sub
|
|
|
|
|
apply analyticAt_id -- Warning: want apply AnalyticAt.id
|
|
|
|
|
apply analyticAt_const -- Warning: want AnalyticAt.const
|
|
|
|
|
exact h₁g
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
|
2024-10-14 13:41:05 +02:00
|
|
|
|
/- Analytic functions are strongly meromorphic -/
|
|
|
|
|
theorem AnalyticAt.stronglyMeromorphicAt
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(h₁f : AnalyticAt ℂ f z₀) :
|
|
|
|
|
StronglyMeromorphicAt f z₀ := by
|
|
|
|
|
by_cases h₂f : h₁f.order = ⊤
|
|
|
|
|
· rw [AnalyticAt.order_eq_top_iff] at h₂f
|
|
|
|
|
tauto
|
|
|
|
|
· have : h₁f.order ≠ ⊤ := h₂f
|
|
|
|
|
rw [← ENat.coe_toNat_eq_self] at this
|
|
|
|
|
rw [eq_comm, AnalyticAt.order_eq_nat_iff] at this
|
|
|
|
|
right
|
|
|
|
|
use h₁f.order.toNat
|
|
|
|
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
|
|
|
|
|
use g
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
/- Make strongly MeromorphicAt -/
|
2024-10-14 13:25:49 +02:00
|
|
|
|
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
ℂ → ℂ := by
|
2024-10-21 10:36:48 +02:00
|
|
|
|
intro z
|
|
|
|
|
by_cases z = z₀
|
2024-10-22 17:12:59 +02:00
|
|
|
|
· by_cases h₁f : hf.order = (0 : ℤ)
|
|
|
|
|
· rw [hf.order_eq_int_iff] at h₁f
|
|
|
|
|
exact (Classical.choose h₁f) z₀
|
2024-10-21 10:36:48 +02:00
|
|
|
|
· exact 0
|
|
|
|
|
· exact f z
|
2024-10-08 09:35:17 +02:00
|
|
|
|
|
2024-10-22 17:12:59 +02:00
|
|
|
|
lemma m₁
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
|
|
|
|
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
|
|
|
|
|
intro z hz
|
|
|
|
|
unfold MeromorphicAt.makeStronglyMeromorphicAt
|
|
|
|
|
simp [hz]
|
|
|
|
|
|
|
|
|
|
lemma m₂
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
2024-10-23 13:03:41 +02:00
|
|
|
|
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
|
2024-10-22 17:12:59 +02:00
|
|
|
|
apply eventually_nhdsWithin_of_forall
|
|
|
|
|
exact fun x a => m₁ hf x a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma Mnhds
|
|
|
|
|
{f g : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
2024-10-23 13:03:41 +02:00
|
|
|
|
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
|
2024-10-22 17:12:59 +02:00
|
|
|
|
(h₂ : f z₀ = g z₀) :
|
2024-10-23 13:03:41 +02:00
|
|
|
|
f =ᶠ[𝓝 z₀] g := by
|
|
|
|
|
apply eventually_nhds_iff.2
|
|
|
|
|
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
|
|
|
|
|
use t
|
|
|
|
|
constructor
|
|
|
|
|
· intro y hy
|
|
|
|
|
by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ)
|
|
|
|
|
· exact h₁t y hy h₂y
|
|
|
|
|
· simp at h₂y
|
|
|
|
|
rwa [h₂y]
|
|
|
|
|
· exact h₂t
|
|
|
|
|
|
2024-10-08 15:39:19 +02:00
|
|
|
|
|
|
|
|
|
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
2024-10-08 09:35:17 +02:00
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
2024-10-21 10:36:48 +02:00
|
|
|
|
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
|
|
|
|
|
|
2024-10-22 17:12:59 +02:00
|
|
|
|
by_cases h₂f : hf.order = ⊤
|
2024-10-23 13:03:41 +02:00
|
|
|
|
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
|
2024-10-22 17:12:59 +02:00
|
|
|
|
apply Mnhds
|
2024-10-23 13:03:41 +02:00
|
|
|
|
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
|
|
|
|
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
|
|
|
|
|
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
|
|
|
|
simp [h₂f]
|
2024-10-22 17:12:59 +02:00
|
|
|
|
|
|
|
|
|
apply AnalyticAt.stronglyMeromorphicAt
|
|
|
|
|
rw [analyticAt_congr this]
|
|
|
|
|
apply analyticAt_const
|
2024-10-23 13:03:41 +02:00
|
|
|
|
· let n := hf.order.untop h₂f
|
|
|
|
|
have : hf.order = n := by
|
|
|
|
|
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
|
|
|
|
|
rw [hf.order_eq_int_iff] at this
|
|
|
|
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
|
|
|
|
|
right
|
|
|
|
|
use n
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
· assumption
|
|
|
|
|
· constructor
|
|
|
|
|
· assumption
|
|
|
|
|
· apply Mnhds
|
|
|
|
|
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
|
|
|
|
exact h₃g
|
|
|
|
|
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
|
|
|
|
simp
|
2024-10-23 13:31:22 +02:00
|
|
|
|
by_cases h₃f : hf.order = (0 : ℤ)
|
|
|
|
|
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
|
|
|
|
|
let G := Classical.choose h₄f
|
|
|
|
|
simp [h₃f]
|
2024-10-24 12:50:08 +02:00
|
|
|
|
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
|
|
|
|
|
simp at h₃G
|
|
|
|
|
have hn : n = 0 := by
|
|
|
|
|
sorry
|
|
|
|
|
rw [hn]
|
|
|
|
|
simp
|
|
|
|
|
have : g =ᶠ[𝓝 z₀] G := by
|
|
|
|
|
sorry
|
|
|
|
|
rw [Filter.EventuallyEq.eq_of_nhds this]
|
|
|
|
|
· have : hf.order ≠ 0 := h₃f
|
|
|
|
|
simp [this]
|
2024-10-23 13:03:41 +02:00
|
|
|
|
left
|
|
|
|
|
apply zero_zpow n
|
|
|
|
|
dsimp [n]
|
|
|
|
|
rwa [WithTop.untop_eq_iff h₂f]
|