Update stronglyMeromorphicAt.lean

This commit is contained in:
Stefan Kebekus 2024-10-25 14:14:07 +02:00
parent 5bf670231f
commit a6defe8296

View File

@ -233,12 +233,41 @@ theorem makeStronglyMeromorphic_id
simp [B]
exact Filter.EventuallyEq.eq_of_nhds h₁f
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁f
rw [Filter.EventuallyEq.eq_of_nhds h₃g]
have : h₀f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff (StronglyMeromorphicAt.meromorphicAt h₀f) n]
use g
constructor
· assumption
· constructor
· assumption
· exact eventually_nhdsWithin_of_eventually_nhds h₃g
by_cases h₃f : h₀f.meromorphicAt.order = 0
· simp [h₃f]
sorry
have hn : n = (0 : ) := by
rw [h₃f] at this
exact WithTop.coe_eq_zero.mp (id (Eq.symm this))
simp_rw [hn]
simp
let t₀ : h₀f.meromorphicAt.order = (0 : ) := by
exact h₃f
let A := (h₀f.meromorphicAt.order_eq_int_iff 0).1 t₀
have : g =ᶠ[𝓝 z₀] (Classical.choose A) := by
obtain ⟨h₀, h₁, h₂⟩ := Classical.choose_spec A
apply localIdentity h₁g h₀
rw [hn] at h₃g
simp at h₃g
simp at h₂
have h₄g : f =ᶠ[𝓝[≠] z₀] g := by
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₄g) h₂
exact Filter.EventuallyEq.eq_of_nhds this
· simp [h₃f]
sorry
left
apply zero_zpow n
by_contra hn
rw [hn] at this
tauto
· exact m₁ (StronglyMeromorphicAt.meromorphicAt hf) z hz