Compare commits

...

4 Commits

Author SHA1 Message Date
Stefan Kebekus 6a12258093 Update holomorphic_examples.lean 2024-08-08 13:30:59 +02:00
Stefan Kebekus e5b9559f69 Update holomorphic_examples.lean 2024-08-08 12:40:32 +02:00
Stefan Kebekus 3e924d5b4a working… 2024-08-08 12:36:06 +02:00
Stefan Kebekus acb1f34879 Update holomorphic_primitive2.lean 2024-08-08 09:55:56 +02:00
3 changed files with 285 additions and 159 deletions

View File

@ -1,6 +1,6 @@
import Nevanlinna.complexHarmonic import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_primitive import Nevanlinna.holomorphic_primitive2
import Nevanlinna.mathlibAddOn import Nevanlinna.mathlibAddOn
@ -108,131 +108,175 @@ function.
theorem harmonic_is_realOfHolomorphic theorem harmonic_is_realOfHolomorphic
{f : } {f : }
(hf : ∀ z, HarmonicAt f z) : {z : }
∃ F : , (∀ z, HolomorphicAt F z) ∧ (Complex.reCLM ∘ F = f) := by {R : }
(hR : 0 < R)
(hf : ∀ x ∈ Metric.ball z R, HarmonicAt f x) :
∃ F : , (∀ x ∈ Metric.ball z R, HolomorphicAt F x) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by
let f_1 : := Complex.ofRealCLM ∘ (partialDeriv 1 f) let f_1 : := Complex.ofRealCLM ∘ (partialDeriv 1 f)
let f_I : := Complex.ofRealCLM ∘ (partialDeriv Complex.I f) let f_I : := Complex.ofRealCLM ∘ (partialDeriv Complex.I f)
let g : := f_1 - Complex.I • f_I let g : := f_1 - Complex.I • f_I
have reg₂f : ContDiff 2 f := by have contDiffOn_if_contDiffAt
apply contDiff_iff_contDiffAt.mpr {f' : }
intro z {z' : }
exact (hf z).1 {R' : }
{n' : }
(hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt n' f' x) :
ContDiffOn n' f' (Metric.ball z' R') := by
intro z hz
apply ContDiffAt.contDiffWithinAt
exact hf' z hz
have reg₁f_1 : ContDiff 1 f_1 := by have reg₂f : ContDiffOn 2 f (Metric.ball z R) := by
apply contDiff_iff_contDiffAt.mpr apply contDiffOn_if_contDiffAt
intro z intro x hx
exact (hf x hx).1
have contDiffOn_if_contDiffAt'
{f' : }
{z' : }
{R' : }
{n' : }
(hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt n' f' x) :
ContDiffOn n' f' (Metric.ball z' R') := by
intro z hz
apply ContDiffAt.contDiffWithinAt
exact hf' z hz
have reg₁f_1 : ContDiffOn 1 f_1 (Metric.ball z R) := by
apply contDiffOn_if_contDiffAt'
intro z hz
dsimp [f_1] dsimp [f_1]
apply ContDiffAt.continuousLinearMap_comp apply ContDiffAt.continuousLinearMap_comp
exact partialDeriv_contDiffAt (hf z).1 1 exact partialDeriv_contDiffAt (hf z hz).1 1
have reg₁f_I : ContDiff 1 f_I := by have reg₁f_I : ContDiffOn 1 f_I (Metric.ball z R) := by
apply contDiff_iff_contDiffAt.mpr apply contDiffOn_if_contDiffAt'
intro z intro z hz
dsimp [f_I] dsimp [f_I]
apply ContDiffAt.continuousLinearMap_comp apply ContDiffAt.continuousLinearMap_comp
exact partialDeriv_contDiffAt (hf z).1 Complex.I exact partialDeriv_contDiffAt (hf z hz).1 Complex.I
have reg₁g : ContDiff 1 g := by have reg₁g : ContDiffOn 1 g (Metric.ball z R) := by
dsimp [g] dsimp [g]
apply ContDiff.sub apply ContDiffOn.sub
exact reg₁f_1 exact reg₁f_1
apply ContDiff.const_smul' have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
rw [this]
apply ContDiffOn.const_smul
exact reg₁f_I exact reg₁f_I
have reg₁ : Differentiable g := by have reg₁ : DifferentiableOn g (Metric.ball z R) := by
intro z intro x hx
apply DifferentiableAt.differentiableWithinAt
apply CauchyRiemann₇.2 apply CauchyRiemann₇.2
constructor constructor
· apply Differentiable.differentiableAt · apply DifferentiableWithinAt.differentiableAt (reg₁g.differentiableOn le_rfl x hx)
apply ContDiff.differentiable apply IsOpen.mem_nhds Metric.isOpen_ball hx
exact reg₁g
rfl
· dsimp [g] · dsimp [g]
rw [partialDeriv_sub₂, partialDeriv_sub₂] rw [partialDeriv_sub₂_differentiableAt, partialDeriv_sub₂_differentiableAt]
simp
dsimp [f_1, f_I] dsimp [f_1, f_I]
rw [partialDeriv_smul'₂, partialDeriv_smul'₂] rw [partialDeriv_smul'₂, partialDeriv_smul'₂]
rw [partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin] rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt]
simp
rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt]
rw [mul_sub] rw [mul_sub]
simp simp
rw [← mul_assoc] rw [← mul_assoc]
simp simp
rw [add_comm, sub_eq_add_neg] rw [add_comm, sub_eq_add_neg]
congr 1 congr 1
· rw [partialDeriv_comm reg₂f Complex.I 1] · rw [partialDeriv_commOn _ reg₂f Complex.I 1]
· let A := Filter.EventuallyEq.eq_of_nhds (hf z).2 exact hx
exact Metric.isOpen_ball
· let A := Filter.EventuallyEq.eq_of_nhds (hf x hx).2
simp at A simp at A
unfold Complex.laplace at A unfold Complex.laplace at A
conv => conv =>
right right
right right
rw [← sub_zero (partialDeriv 1 (partialDeriv 1 f) z)] rw [← sub_zero (partialDeriv 1 (partialDeriv 1 f) x)]
rw [← A] rw [← A]
simp simp
--Differentiable (partialDeriv _ f) --DifferentiableAt (partialDeriv _ f)
repeat repeat
apply ContDiff.differentiable apply ContDiffAt.differentiableAt
apply contDiff_iff_contDiffAt.mpr apply partialDeriv_contDiffAt (hf x hx).1
exact fun w ↦ partialDeriv_contDiffAt (hf w).1 _
apply le_rfl apply le_rfl
-- Differentiable f_1
exact reg₁f_1.differentiable le_rfl
-- Differentiable (Complex.I • f_I)
apply Differentiable.const_smul'
exact reg₁f_I.differentiable le_rfl
-- Differentiable f_1
exact reg₁f_1.differentiable le_rfl
-- Differentiable (Complex.I • f_I)
apply Differentiable.const_smul'
exact reg₁f_I.differentiable le_rfl
let F := fun z ↦ (primitive 0 g) z + f 0 -- DifferentiableAt f_1 x
apply (reg₁f_1.differentiableOn le_rfl).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
have regF : Differentiable F := by -- DifferentiableAt (Complex.I • f_I)
apply Differentiable.add have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
apply primitive_differentiable reg₁ rw [this]
apply DifferentiableAt.const_smul
apply (reg₁f_I.differentiableOn le_rfl).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
-- Differentiable f_1
apply (reg₁f_1.differentiableOn le_rfl).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
-- Differentiable (Complex.I • f_I)
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
rw [this]
apply DifferentiableAt.const_smul
apply (reg₁f_I.differentiableOn le_rfl).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
let F := fun z' ↦ (primitive z g) z' + f z
have regF : DifferentiableOn F (Metric.ball z R) := by
apply DifferentiableOn.add
apply primitive_differentiableOn reg₁
simp simp
have pF'' : ∀ x, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by have pF'' : ∀ x ∈ Metric.ball z R, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by
intro x intro x hx
rw [DifferentiableAt.fderiv_restrictScalars (regF x)] have : DifferentiableAt F x := by
apply (regF x hx).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
rw [DifferentiableAt.fderiv_restrictScalars this]
dsimp [F] dsimp [F]
rw [fderiv_add_const] rw [fderiv_add_const]
rw [primitive_fderiv'] rw [primitive_fderiv' reg₁ x hx]
exact rfl exact rfl
exact reg₁
use F use F
constructor constructor
· -- ∀ (z : ), HolomorphicAt F z · -- ∀ x ∈ Metric.ball z R, HolomorphicAt F x
intro z intro x hx
apply HolomorphicAt_iff.2 apply HolomorphicAt_iff.2
use Set.univ use Metric.ball z R
constructor constructor
· exact isOpen_const · exact Metric.isOpen_ball
· constructor · constructor
· simp · assumption
· intro w _ · intro w hw
exact regF w apply (regF w hw).differentiableAt
· -- (F z).re = f z apply IsOpen.mem_nhds Metric.isOpen_ball hw
have A := reg₂f.differentiable one_le_two · -- Set.EqOn (⇑Complex.reCLM ∘ F) f (Metric.ball z R)
have B : Differentiable (Complex.reCLM ∘ F) := by have : DifferentiableOn (Complex.reCLM ∘ F) (Metric.ball z R) := by
apply Differentiable.comp apply DifferentiableOn.comp
exact ContinuousLinearMap.differentiable Complex.reCLM apply Differentiable.differentiableOn
exact Differentiable.restrictScalars regF apply ContinuousLinearMap.differentiable Complex.reCLM
have C : (F 0).re = f 0 := by apply regF.restrictScalars
dsimp [F] exact Set.mapsTo'.mpr fun ⦃a⦄ _ => hR
rw [primitive_zeroAtBasepoint] have hz : z ∈ Metric.ball z R := by exact Metric.mem_ball_self hR
simp apply Convex.eqOn_of_fderivWithin_eq _ this _ _ _ hz _
exact convex_ball z R
apply reg₂f.differentiableOn one_le_two
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
apply eq_of_fderiv_eq B A _ 0 C intro x hx
rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv]
intro x
rw [fderiv.comp] rw [fderiv.comp]
simp simp
apply ContinuousLinearMap.ext apply ContinuousLinearMap.ext
@ -247,7 +291,24 @@ theorem harmonic_is_realOfHolomorphic
rw [(fderiv f x).map_smul, (fderiv f x).map_smul] rw [(fderiv f x).map_smul, (fderiv f x).map_smul]
rw [smul_eq_mul, smul_eq_mul] rw [smul_eq_mul, smul_eq_mul]
ring ring
-- DifferentiableAt (⇑Complex.reCLM) (F x)
fun_prop assumption
-- DifferentiableAt F x exact ContinuousLinearMap.differentiableAt Complex.reCLM
exact regF.restrictScalars x apply (regF.restrictScalars x hx).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
assumption
apply (reg₂f.differentiableOn one_le_two).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
assumption
-- DifferentiableAt (⇑Complex.reCLM ∘ F) x
apply DifferentiableAt.comp
apply Differentiable.differentiableAt
exact ContinuousLinearMap.differentiable Complex.reCLM
apply (regF.restrictScalars x hx).differentiableAt
apply IsOpen.mem_nhds Metric.isOpen_ball hx
--
dsimp [F]
rw [primitive_zeroAtBasepoint]
simp

View File

@ -49,9 +49,6 @@ theorem primitive_fderivAtBasepointZero
rw [this] rw [this]
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : )), IsOpen s ∧ 0 ∈ s := by obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : )), IsOpen s ∧ 0 ∈ s := by
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
apply Metric.ball_mem_nhds (f 0)
linarith
apply eventually_nhds_iff.mp apply eventually_nhds_iff.mp
apply continuousAt_def.1 apply continuousAt_def.1
apply Continuous.continuousAt apply Continuous.continuousAt
@ -124,74 +121,106 @@ theorem primitive_fderivAtBasepointZero
apply h₁s apply h₁s
exact h₂ε.1 hy exact h₂ε.1 hy
have t₀ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
apply Continuous.continuousOn
continuity
intro x hx
apply h₂ε.2
simp
constructor
· simp
calc |x|
_ < ε := by
sorry
· simpa
have t₁ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by have intervalComputation_uIcc {x' y' : } (h : x' ∈ Set.uIcc 0 y') : |x'| ≤ |y'| := by
apply ContinuousOn.intervalIntegrable let A := h.1
apply ContinuousOn.comp let B := h.2
apply hf rcases le_total 0 y' with hy | hy
fun_prop · simp [hy] at A
intro x hx simp [hy] at B
simpa rwa [abs_of_nonneg A, abs_of_nonneg hy]
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonpos hy]
rw [abs_of_nonpos]
linarith [h.1]
exact B
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
conv =>
left
intro x
left
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem] rw [Filter.eventually_iff_exists_mem]
use Metric.ball 0 (ε / (4 : )) use Metric.ball 0 (ε / (4 : ))
constructor constructor
· apply Metric.ball_mem_nhds 0 · apply Metric.ball_mem_nhds 0
linarith linarith
· intro y hy · intro y hy
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
rw [this]
rw [← smul_sub]
have t₀ : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 y.re := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
apply Continuous.continuousOn
continuity
intro x hx
apply h₂ε.2
simp
constructor
· simp
calc |x|
_ ≤ |y.re| := by apply intervalComputation_uIcc hx
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
· simpa
have t₁ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.re := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
apply hf
fun_prop
intro x _
simpa
rw [← intervalIntegral.integral_sub t₀ t₁]
have t₂ : IntervalIntegrable (fun x_1 => f { re := y.re, im := x_1 }) MeasureTheory.volume 0 y.im := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (Complex.mk y.re) = (fun x => Complex.I • Complex.ofRealCLM x + { re := y.re, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply ContinuousOn.add
apply Continuous.continuousOn
continuity
fun_prop
intro x hx
apply h₂ε.2
constructor
· simp
calc |y.re|
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
· simp
calc |x|
_ ≤ |y.im| := by apply intervalComputation_uIcc hx
_ ≤ Complex.abs y := by exact Complex.abs_im_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
have t₃ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.im := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
fun_prop
intro x _
apply h₂ε.2
simp
constructor
· simpa
· simpa
rw [← intervalIntegral.integral_sub t₂ t₃]
have h₁y : |y.re| < ε / 4 := by have h₁y : |y.re| < ε / 4 := by
calc |y.re| calc |y.re|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs _ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
@ -752,12 +781,11 @@ theorem primitive_hasDerivAt
apply hasDerivAt_const apply hasDerivAt_const
theorem primitive_differentiableOn
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E} {f : → E}
(z₀ : ) {z₀ : }
(R : ) {R : }
(hf : DifferentiableOn f (Metric.ball z₀ R)) (hf : DifferentiableOn f (Metric.ball z₀ R))
: :
DifferentiableOn (primitive z₀ f) (Metric.ball z₀ R) := by DifferentiableOn (primitive z₀ f) (Metric.ball z₀ R) := by

View File

@ -38,10 +38,10 @@ theorem partialDeriv_eventuallyEq
exact fun v => rfl exact fun v => rfl
theorem partialDeriv_smul₁ theorem partialDeriv_smul₁
{f : E → F} {f : E → F}
{a : 𝕜} {a : 𝕜}
{v : E} : {v : E} :
partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
unfold partialDeriv unfold partialDeriv
conv => conv =>
@ -102,20 +102,6 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f
simp simp
theorem partialDeriv_sub₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ - f₂) = (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
unfold partialDeriv
intro v
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
rw [this]
conv =>
left
intro w
left
rw [fderiv_sub (h₁ w) (h₂ w)]
funext w
simp
theorem partialDeriv_add₂_differentiableAt theorem partialDeriv_add₂_differentiableAt
{f₁ f₂ : E → F} {f₁ f₂ : E → F}
{v : E} {v : E}
@ -153,6 +139,57 @@ theorem partialDeriv_add₂_contDiffAt
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
theorem partialDeriv_sub₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ - f₂) = (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
unfold partialDeriv
intro v
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
rw [this]
conv =>
left
intro w
left
rw [fderiv_sub (h₁ w) (h₂ w)]
funext w
simp
theorem partialDeriv_sub₂_differentiableAt
{f₁ f₂ : E → F}
{v : E}
{x : E}
(h₁ : DifferentiableAt 𝕜 f₁ x)
(h₂ : DifferentiableAt 𝕜 f₂ x) :
partialDeriv 𝕜 v (f₁ - f₂) x = (partialDeriv 𝕜 v f₁) x - (partialDeriv 𝕜 v f₂) x := by
unfold partialDeriv
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
rw [this]
rw [fderiv_sub h₁ h₂]
rfl
theorem partialDeriv_sub₂_contDiffAt
{f₁ f₂ : E → F}
{v : E}
{x : E}
(h₁ : ContDiffAt 𝕜 1 f₁ x)
(h₂ : ContDiffAt 𝕜 1 f₂ x) :
partialDeriv 𝕜 v (f₁ - f₂) =ᶠ[nhds x] (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
obtain ⟨f₁', u₁, hu₁, _, hf₁'⟩ := contDiffAt_one_iff.1 h₁
obtain ⟨f₂', u₂, hu₂, _, hf₂'⟩ := contDiffAt_one_iff.1 h₂
apply Filter.eventuallyEq_iff_exists_mem.2
use u₁ ∩ u₂
constructor
· exact Filter.inter_mem hu₁ hu₂
· intro x hx
simp
apply partialDeriv_sub₂_differentiableAt 𝕜
exact (hf₁' x (Set.mem_of_mem_inter_left hx)).differentiableAt
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
theorem partialDeriv_compContLin theorem partialDeriv_compContLin
{f : E → F} {f : E → F}
{l : F →L[𝕜] G} {l : F →L[𝕜] G}