Update holomorphic_primitive2.lean
This commit is contained in:
parent
951c25624e
commit
83f9aa5d72
@ -47,22 +47,110 @@ theorem primitive_fderivAtBasepointZero
|
||||
arg 1
|
||||
arg 2
|
||||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)), IsOpen s ∧ 0 ∈ s := by
|
||||
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
linarith
|
||||
apply eventually_nhds_iff.mp
|
||||
apply continuousAt_def.1
|
||||
apply Continuous.continuousAt
|
||||
fun_prop
|
||||
|
||||
apply continuousAt_def.1
|
||||
apply hf.continuousAt
|
||||
exact Metric.ball_mem_nhds 0 hR
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
simpa
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s ∧ (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ Metric.ball 0 R := by
|
||||
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
|
||||
apply Metric.mem_nhds_iff.mp
|
||||
apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter
|
||||
exact h₂s.1
|
||||
exact Metric.isOpen_ball
|
||||
constructor
|
||||
· exact h₂s.2
|
||||
· simpa
|
||||
|
||||
use (2 : ℝ)⁻¹ * ε'
|
||||
|
||||
constructor
|
||||
· simpa
|
||||
· constructor
|
||||
· intro x hx
|
||||
apply (h₂ε' _).1
|
||||
simp
|
||||
calc Complex.abs x
|
||||
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
|
||||
_ < (2 : ℝ)⁻¹ * ε' + |x.im| := by
|
||||
apply (add_lt_add_iff_right |x.im|).mpr
|
||||
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
|
||||
simp at this
|
||||
exact this
|
||||
_ < (2 : ℝ)⁻¹ * ε' + (2 : ℝ)⁻¹ * ε' := by
|
||||
apply (add_lt_add_iff_left ((2 : ℝ)⁻¹ * ε')).mpr
|
||||
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
|
||||
simp at this
|
||||
exact this
|
||||
_ = ε' := by
|
||||
rw [← add_mul]
|
||||
abel_nf
|
||||
simp
|
||||
· intro x hx
|
||||
apply (h₂ε' _).2
|
||||
simp
|
||||
calc Complex.abs x
|
||||
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
|
||||
_ < (2 : ℝ)⁻¹ * ε' + |x.im| := by
|
||||
apply (add_lt_add_iff_right |x.im|).mpr
|
||||
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
|
||||
simp at this
|
||||
exact this
|
||||
_ < (2 : ℝ)⁻¹ * ε' + (2 : ℝ)⁻¹ * ε' := by
|
||||
apply (add_lt_add_iff_left ((2 : ℝ)⁻¹ * ε')).mpr
|
||||
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
|
||||
simp at this
|
||||
exact this
|
||||
_ = ε' := by
|
||||
rw [← add_mul]
|
||||
abel_nf
|
||||
simp
|
||||
|
||||
have h₃ε : ∀ y ∈ (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε), ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp
|
||||
apply h₁s
|
||||
exact h₂ε.1 hy
|
||||
|
||||
have t₀ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf
|
||||
have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl
|
||||
rw [this]
|
||||
apply Continuous.continuousOn
|
||||
continuity
|
||||
intro x hx
|
||||
apply h₂ε.2
|
||||
simp
|
||||
constructor
|
||||
· simp
|
||||
calc |x|
|
||||
_ < ε := by
|
||||
sorry
|
||||
· simpa
|
||||
|
||||
have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have t₁ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
apply hf
|
||||
fun_prop
|
||||
intro x hx
|
||||
simpa
|
||||
|
||||
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp hf
|
||||
@ -82,6 +170,9 @@ theorem primitive_fderivAtBasepointZero
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
@ -89,63 +180,12 @@ theorem primitive_fderivAtBasepointZero
|
||||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)), IsOpen s ∧ 0 ∈ s := by
|
||||
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
linarith
|
||||
apply eventually_nhds_iff.mp
|
||||
apply continuousAt_def.1
|
||||
apply Continuous.continuousAt
|
||||
fun_prop
|
||||
|
||||
apply continuousAt_def.1
|
||||
apply hf.continuousAt
|
||||
exact Metric.ball_mem_nhds 0 hR
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
simpa
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s := by
|
||||
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
|
||||
apply Metric.mem_nhds_iff.mp
|
||||
apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter
|
||||
exact h₂s.1
|
||||
exact Metric.isOpen_ball
|
||||
constructor
|
||||
· exact h₂s.2
|
||||
· simpa
|
||||
use (2 : ℝ)⁻¹ * ε'
|
||||
constructor
|
||||
· simpa
|
||||
· intro x hx
|
||||
apply Set.inter_subset_left
|
||||
apply h₂ε'
|
||||
simp
|
||||
calc Complex.abs x
|
||||
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
|
||||
_ < (2 : ℝ)⁻¹ * ε' + |x.im| := by
|
||||
apply (add_lt_add_iff_right |x.im|).mpr
|
||||
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
|
||||
simp at this
|
||||
exact this
|
||||
_ < (2 : ℝ)⁻¹ * ε' + (2 : ℝ)⁻¹ * ε' := by
|
||||
apply (add_lt_add_iff_left ((2 : ℝ)⁻¹ * ε')).mpr
|
||||
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
|
||||
simp at this
|
||||
exact this
|
||||
_ = ε' := by
|
||||
rw [← add_mul]
|
||||
abel_nf
|
||||
simp
|
||||
|
||||
have h₃ε : ∀ y ∈ (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε), ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp
|
||||
exact h₁s (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
|
Loading…
Reference in New Issue
Block a user