Update holomorphic_primitive2.lean

This commit is contained in:
Stefan Kebekus 2024-08-07 15:15:03 +02:00
parent 951c25624e
commit 83f9aa5d72

View File

@ -47,22 +47,110 @@ theorem primitive_fderivAtBasepointZero
arg 1
arg 2
rw [this]
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
have t₀ {r : } : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : )), IsOpen s ∧ 0 ∈ s := by
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
apply Metric.ball_mem_nhds (f 0)
linarith
apply eventually_nhds_iff.mp
apply continuousAt_def.1
apply Continuous.continuousAt
fun_prop
apply continuousAt_def.1
apply hf.continuousAt
exact Metric.ball_mem_nhds 0 hR
apply Metric.ball_mem_nhds (f 0)
simpa
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) × (Metric.ball 0 ε) ⊆ s ∧ (Metric.ball 0 ε) × (Metric.ball 0 ε) ⊆ Metric.ball 0 R := by
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
apply Metric.mem_nhds_iff.mp
apply IsOpen.mem_nhds
apply IsOpen.inter
exact h₂s.1
exact Metric.isOpen_ball
constructor
· exact h₂s.2
· simpa
use (2 : )⁻¹ * ε'
constructor
· simpa
· constructor
· intro x hx
apply (h₂ε' _).1
simp
calc Complex.abs x
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
_ < (2 : )⁻¹ * ε' + |x.im| := by
apply (add_lt_add_iff_right |x.im|).mpr
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
simp at this
exact this
_ < (2 : )⁻¹ * ε' + (2 : )⁻¹ * ε' := by
apply (add_lt_add_iff_left ((2 : )⁻¹ * ε')).mpr
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
simp at this
exact this
_ = ε' := by
rw [← add_mul]
abel_nf
simp
· intro x hx
apply (h₂ε' _).2
simp
calc Complex.abs x
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
_ < (2 : )⁻¹ * ε' + |x.im| := by
apply (add_lt_add_iff_right |x.im|).mpr
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
simp at this
exact this
_ < (2 : )⁻¹ * ε' + (2 : )⁻¹ * ε' := by
apply (add_lt_add_iff_left ((2 : )⁻¹ * ε')).mpr
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
simp at this
exact this
_ = ε' := by
rw [← add_mul]
abel_nf
simp
have h₃ε : ∀ y ∈ (Metric.ball 0 ε) × (Metric.ball 0 ε), ‖(f y) - (f 0)‖ < (c / (4 : )) := by
intro y hy
apply mem_ball_iff_norm.mp
apply h₁s
exact h₂ε.1 hy
have t₀ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
apply Continuous.continuousOn
continuity
intro x hx
apply h₂ε.2
simp
constructor
· simp
calc |x|
_ < ε := by
sorry
· simpa
have t₁ {r : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
have t₁ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
apply hf
fun_prop
intro x hx
simpa
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
@ -82,6 +170,9 @@ theorem primitive_fderivAtBasepointZero
apply Continuous.comp
exact hf
fun_prop
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
conv =>
left
intro x
@ -89,63 +180,12 @@ theorem primitive_fderivAtBasepointZero
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem]
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : )), IsOpen s ∧ 0 ∈ s := by
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
apply Metric.ball_mem_nhds (f 0)
linarith
apply eventually_nhds_iff.mp
apply continuousAt_def.1
apply Continuous.continuousAt
fun_prop
apply continuousAt_def.1
apply hf.continuousAt
exact Metric.ball_mem_nhds 0 hR
apply Metric.ball_mem_nhds (f 0)
simpa
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) × (Metric.ball 0 ε) ⊆ s := by
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
apply Metric.mem_nhds_iff.mp
apply IsOpen.mem_nhds
apply IsOpen.inter
exact h₂s.1
exact Metric.isOpen_ball
constructor
· exact h₂s.2
· simpa
use (2 : )⁻¹ * ε'
constructor
· simpa
· intro x hx
apply Set.inter_subset_left
apply h₂ε'
simp
calc Complex.abs x
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
_ < (2 : )⁻¹ * ε' + |x.im| := by
apply (add_lt_add_iff_right |x.im|).mpr
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
simp at this
exact this
_ < (2 : )⁻¹ * ε' + (2 : )⁻¹ * ε' := by
apply (add_lt_add_iff_left ((2 : )⁻¹ * ε')).mpr
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
simp at this
exact this
_ = ε' := by
rw [← add_mul]
abel_nf
simp
have h₃ε : ∀ y ∈ (Metric.ball 0 ε) × (Metric.ball 0 ε), ‖(f y) - (f 0)‖ < (c / (4 : )) := by
intro y hy
apply mem_ball_iff_norm.mp
exact h₁s (h₂ε hy)
use Metric.ball 0 (ε / (4 : ))
constructor