Update holomorphic_examples.lean
This commit is contained in:
parent
e5b9559f69
commit
6a12258093
@ -112,7 +112,7 @@ theorem harmonic_is_realOfHolomorphic
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(hf : ∀ x ∈ Metric.ball z R, HarmonicAt f x) :
|
||||
∃ F : ℂ → ℂ, (∀ z ∈ Metric.ball z R, HolomorphicAt F z) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by
|
||||
∃ F : ℂ → ℂ, (∀ x ∈ Metric.ball z R, HolomorphicAt F x) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by
|
||||
|
||||
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
||||
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
||||
@ -251,7 +251,7 @@ theorem harmonic_is_realOfHolomorphic
|
||||
use F
|
||||
|
||||
constructor
|
||||
· -- ∀ (z : ℂ), HolomorphicAt F z
|
||||
· -- ∀ x ∈ Metric.ball z R, HolomorphicAt F x
|
||||
intro x hx
|
||||
apply HolomorphicAt_iff.2
|
||||
use Metric.ball z R
|
||||
@ -262,20 +262,21 @@ theorem harmonic_is_realOfHolomorphic
|
||||
· intro w hw
|
||||
apply (regF w hw).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hw
|
||||
· -- (F z).re = f z
|
||||
have A := reg₂f.differentiable one_le_two
|
||||
have B : Differentiable ℝ (Complex.reCLM ∘ F) := by
|
||||
apply Differentiable.comp
|
||||
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||
exact Differentiable.restrictScalars ℝ regF
|
||||
have C : (F 0).re = f 0 := by
|
||||
dsimp [F]
|
||||
rw [primitive_zeroAtBasepoint]
|
||||
simp
|
||||
· -- Set.EqOn (⇑Complex.reCLM ∘ F) f (Metric.ball z R)
|
||||
have : DifferentiableOn ℝ (Complex.reCLM ∘ F) (Metric.ball z R) := by
|
||||
apply DifferentiableOn.comp
|
||||
apply Differentiable.differentiableOn
|
||||
apply ContinuousLinearMap.differentiable Complex.reCLM
|
||||
apply regF.restrictScalars ℝ
|
||||
exact Set.mapsTo'.mpr fun ⦃a⦄ _ => hR
|
||||
have hz : z ∈ Metric.ball z R := by exact Metric.mem_ball_self hR
|
||||
apply Convex.eqOn_of_fderivWithin_eq _ this _ _ _ hz _
|
||||
exact convex_ball z R
|
||||
apply reg₂f.differentiableOn one_le_two
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
|
||||
apply eq_of_fderiv_eq B A _ 0 C
|
||||
|
||||
intro x
|
||||
intro x hx
|
||||
rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv]
|
||||
rw [fderiv.comp]
|
||||
simp
|
||||
apply ContinuousLinearMap.ext
|
||||
@ -290,7 +291,24 @@ theorem harmonic_is_realOfHolomorphic
|
||||
rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul]
|
||||
rw [smul_eq_mul, smul_eq_mul]
|
||||
ring
|
||||
-- DifferentiableAt ℝ (⇑Complex.reCLM) (F x)
|
||||
fun_prop
|
||||
-- DifferentiableAt ℝ F x
|
||||
exact regF.restrictScalars ℝ x
|
||||
|
||||
assumption
|
||||
exact ContinuousLinearMap.differentiableAt Complex.reCLM
|
||||
apply (regF.restrictScalars ℝ x hx).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
assumption
|
||||
apply (reg₂f.differentiableOn one_le_two).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
assumption
|
||||
-- DifferentiableAt ℝ (⇑Complex.reCLM ∘ F) x
|
||||
apply DifferentiableAt.comp
|
||||
apply Differentiable.differentiableAt
|
||||
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||
apply (regF.restrictScalars ℝ x hx).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
--
|
||||
dsimp [F]
|
||||
rw [primitive_zeroAtBasepoint]
|
||||
simp
|
||||
|
Loading…
Reference in New Issue
Block a user