diff --git a/Nevanlinna/holomorphic_examples.lean b/Nevanlinna/holomorphic_examples.lean index 5ed5fca..c78a2c2 100644 --- a/Nevanlinna/holomorphic_examples.lean +++ b/Nevanlinna/holomorphic_examples.lean @@ -112,7 +112,7 @@ theorem harmonic_is_realOfHolomorphic {R : ℝ} (hR : 0 < R) (hf : ∀ x ∈ Metric.ball z R, HarmonicAt f x) : - ∃ F : ℂ → ℂ, (∀ z ∈ Metric.ball z R, HolomorphicAt F z) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by + ∃ F : ℂ → ℂ, (∀ x ∈ Metric.ball z R, HolomorphicAt F x) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f) let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f) @@ -251,7 +251,7 @@ theorem harmonic_is_realOfHolomorphic use F constructor - · -- ∀ (z : ℂ), HolomorphicAt F z + · -- ∀ x ∈ Metric.ball z R, HolomorphicAt F x intro x hx apply HolomorphicAt_iff.2 use Metric.ball z R @@ -262,20 +262,21 @@ theorem harmonic_is_realOfHolomorphic · intro w hw apply (regF w hw).differentiableAt apply IsOpen.mem_nhds Metric.isOpen_ball hw - · -- (F z).re = f z - have A := reg₂f.differentiable one_le_two - have B : Differentiable ℝ (Complex.reCLM ∘ F) := by - apply Differentiable.comp - exact ContinuousLinearMap.differentiable Complex.reCLM - exact Differentiable.restrictScalars ℝ regF - have C : (F 0).re = f 0 := by - dsimp [F] - rw [primitive_zeroAtBasepoint] - simp + · -- Set.EqOn (⇑Complex.reCLM ∘ F) f (Metric.ball z R) + have : DifferentiableOn ℝ (Complex.reCLM ∘ F) (Metric.ball z R) := by + apply DifferentiableOn.comp + apply Differentiable.differentiableOn + apply ContinuousLinearMap.differentiable Complex.reCLM + apply regF.restrictScalars ℝ + exact Set.mapsTo'.mpr fun ⦃a⦄ _ => hR + have hz : z ∈ Metric.ball z R := by exact Metric.mem_ball_self hR + apply Convex.eqOn_of_fderivWithin_eq _ this _ _ _ hz _ + exact convex_ball z R + apply reg₂f.differentiableOn one_le_two + apply IsOpen.uniqueDiffOn Metric.isOpen_ball - apply eq_of_fderiv_eq B A _ 0 C - - intro x + intro x hx + rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv] rw [fderiv.comp] simp apply ContinuousLinearMap.ext @@ -290,7 +291,24 @@ theorem harmonic_is_realOfHolomorphic rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul] rw [smul_eq_mul, smul_eq_mul] ring - -- DifferentiableAt ℝ (⇑Complex.reCLM) (F x) - fun_prop - -- DifferentiableAt ℝ F x - exact regF.restrictScalars ℝ x + + assumption + exact ContinuousLinearMap.differentiableAt Complex.reCLM + apply (regF.restrictScalars ℝ x hx).differentiableAt + apply IsOpen.mem_nhds Metric.isOpen_ball hx + apply IsOpen.uniqueDiffOn Metric.isOpen_ball + assumption + apply (reg₂f.differentiableOn one_le_two).differentiableAt + apply IsOpen.mem_nhds Metric.isOpen_ball hx + apply IsOpen.uniqueDiffOn Metric.isOpen_ball + assumption + -- DifferentiableAt ℝ (⇑Complex.reCLM ∘ F) x + apply DifferentiableAt.comp + apply Differentiable.differentiableAt + exact ContinuousLinearMap.differentiable Complex.reCLM + apply (regF.restrictScalars ℝ x hx).differentiableAt + apply IsOpen.mem_nhds Metric.isOpen_ball hx + -- + dsimp [F] + rw [primitive_zeroAtBasepoint] + simp