Update holomorphic_primitive2.lean

This commit is contained in:
Stefan Kebekus 2024-08-08 09:55:56 +02:00
parent 83f9aa5d72
commit acb1f34879

View File

@ -49,9 +49,6 @@ theorem primitive_fderivAtBasepointZero
rw [this]
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : )), IsOpen s ∧ 0 ∈ s := by
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
apply Metric.ball_mem_nhds (f 0)
linarith
apply eventually_nhds_iff.mp
apply continuousAt_def.1
apply Continuous.continuousAt
@ -124,74 +121,106 @@ theorem primitive_fderivAtBasepointZero
apply h₁s
exact h₂ε.1 hy
have t₀ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
apply Continuous.continuousOn
continuity
intro x hx
apply h₂ε.2
simp
constructor
· simp
calc |x|
_ < ε := by
sorry
· simpa
have t₁ {r : } (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
apply hf
fun_prop
intro x hx
simpa
have intervalComputation_uIcc {x' y' : } (h : x' ∈ Set.uIcc 0 y') : |x'| ≤ |y'| := by
let A := h.1
let B := h.2
rcases le_total 0 y' with hy | hy
· simp [hy] at A
simp [hy] at B
rwa [abs_of_nonneg A, abs_of_nonneg hy]
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonpos hy]
rw [abs_of_nonpos]
linarith [h.1]
exact B
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
conv =>
left
intro x
left
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem]
use Metric.ball 0 (ε / (4 : ))
constructor
· apply Metric.ball_mem_nhds 0
linarith
· intro y hy
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
rw [this]
rw [← smul_sub]
have t₀ : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 y.re := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
apply Continuous.continuousOn
continuity
intro x hx
apply h₂ε.2
simp
constructor
· simp
calc |x|
_ ≤ |y.re| := by apply intervalComputation_uIcc hx
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
· simpa
have t₁ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.re := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
apply hf
fun_prop
intro x _
simpa
rw [← intervalIntegral.integral_sub t₀ t₁]
have t₂ : IntervalIntegrable (fun x_1 => f { re := y.re, im := x_1 }) MeasureTheory.volume 0 y.im := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
have : (Complex.mk y.re) = (fun x => Complex.I • Complex.ofRealCLM x + { re := y.re, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply ContinuousOn.add
apply Continuous.continuousOn
continuity
fun_prop
intro x hx
apply h₂ε.2
constructor
· simp
calc |y.re|
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
· simp
calc |x|
_ ≤ |y.im| := by apply intervalComputation_uIcc hx
_ ≤ Complex.abs y := by exact Complex.abs_im_le_abs y
_ < ε / 4 := by simp at hy; assumption
_ < ε := by linarith
have t₃ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.im := by
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp
exact hf
fun_prop
intro x _
apply h₂ε.2
simp
constructor
· simpa
· simpa
rw [← intervalIntegral.integral_sub t₂ t₃]
have h₁y : |y.re| < ε / 4 := by
calc |y.re|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs