Compare commits
24 Commits
111fcea7af
...
dba4e2d9c4
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | dba4e2d9c4 | |
Stefan Kebekus | fe0d8a5f5e | |
Stefan Kebekus | 712be956d0 | |
Stefan Kebekus | 5a984253c6 | |
Stefan Kebekus | 42c1c14edf | |
Stefan Kebekus | b988031047 | |
Stefan Kebekus | dbea68061b | |
Stefan Kebekus | f83f772506 | |
Stefan Kebekus | dbeb631178 | |
Stefan Kebekus | 1e8c5bad0f | |
Stefan Kebekus | b91e3677c0 | |
Stefan Kebekus | 47e1bfe35e | |
Stefan Kebekus | 6651c0852a | |
Stefan Kebekus | 3bead7a9bf | |
Stefan Kebekus | e901f241cc | |
Stefan Kebekus | 745e614016 | |
Stefan Kebekus | 8e5ada9a01 | |
Stefan Kebekus | ef7e1df191 | |
Stefan Kebekus | fa2e431f4c | |
Stefan Kebekus | f732c82f92 | |
Stefan Kebekus | cd58c18a78 | |
Stefan Kebekus | 5dc437751b | |
Stefan Kebekus | aa79fdb9eb | |
Stefan Kebekus | e41a08f1d5 |
|
@ -0,0 +1,226 @@
|
|||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Analytic.Linear
|
||||
|
||||
|
||||
|
||||
theorem AnalyticAt.order_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticAt.order_eq_zero_iff
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticAt ℂ f z₀) :
|
||||
hf.order = 0 ↔ f z₀ ≠ 0 := by
|
||||
|
||||
have : (0 : ENat) = (0 : Nat) := by rfl
|
||||
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
|
||||
|
||||
constructor
|
||||
· intro hz
|
||||
obtain ⟨g, _, h₂g, h₃g⟩ := hz
|
||||
simp at h₃g
|
||||
rw [Filter.Eventually.self_of_nhds h₃g]
|
||||
tauto
|
||||
· intro hz
|
||||
use f
|
||||
constructor
|
||||
· exact hf
|
||||
· constructor
|
||||
· exact hz
|
||||
· simp
|
||||
|
||||
|
||||
theorem AnalyticAt.order_pow
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
{n : ℕ}
|
||||
(hf : AnalyticAt ℂ f z₀) :
|
||||
(hf.pow n).order = n * hf.order := by
|
||||
|
||||
induction' n with n hn
|
||||
· simp; rw [AnalyticAt.order_eq_zero_iff]; simp
|
||||
· simp
|
||||
simp_rw [add_mul, pow_add]
|
||||
simp
|
||||
rw [AnalyticAt.order_mul (hf.pow n) hf]
|
||||
rw [hn]
|
||||
|
||||
|
||||
theorem AnalyticAt.supp_order_toNat
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticAt ℂ f z₀) :
|
||||
hf.order.toNat ≠ 0 → f z₀ = 0 := by
|
||||
|
||||
contrapose
|
||||
intro h₁f
|
||||
simp [hf.order_eq_zero_iff.2 h₁f]
|
||||
|
||||
|
||||
theorem ContinuousLinearEquiv.analyticAt
|
||||
(ℓ : ℂ ≃L[ℂ] ℂ) (z₀ : ℂ) : AnalyticAt ℂ (⇑ℓ) z₀ := ℓ.toContinuousLinearMap.analyticAt z₀
|
||||
|
||||
|
||||
theorem eventually_nhds_comp_composition
|
||||
{f₁ f₂ ℓ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : ∀ᶠ (z : ℂ) in nhds (ℓ z₀), f₁ z = f₂ z)
|
||||
(hℓ : Continuous ℓ) :
|
||||
∀ᶠ (z : ℂ) in nhds z₀, (f₁ ∘ ℓ) z = (f₂ ∘ ℓ) z := by
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 hf
|
||||
apply eventually_nhds_iff.2
|
||||
use ℓ⁻¹' t
|
||||
constructor
|
||||
· intro y hy
|
||||
exact h₁t (ℓ y) hy
|
||||
· constructor
|
||||
· apply IsOpen.preimage
|
||||
exact hℓ
|
||||
exact h₂t
|
||||
· exact h₃t
|
||||
|
||||
|
||||
theorem AnalyticAt.order_congr
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf : f₁ =ᶠ[nhds z₀] f₂) :
|
||||
hf₁.order = (hf₁.congr hf).order := by
|
||||
|
||||
by_cases h₁f₁ : hf₁.order = ⊤
|
||||
rw [h₁f₁, eq_comm, AnalyticAt.order_eq_top_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff] at h₁f₁
|
||||
exact Filter.EventuallyEq.rw h₁f₁ (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||||
--
|
||||
let n := hf₁.order.toNat
|
||||
have hn : hf₁.order = n := Eq.symm (ENat.coe_toNat h₁f₁)
|
||||
rw [hn, eq_comm, AnalyticAt.order_eq_nat_iff]
|
||||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||||
use g
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· exact Filter.EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||||
|
||||
|
||||
theorem AnalyticAt.order_comp_CLE
|
||||
(ℓ : ℂ ≃L[ℂ] ℂ)
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticAt ℂ f (ℓ z₀)) :
|
||||
hf.order = (hf.comp (ℓ.analyticAt z₀)).order := by
|
||||
|
||||
by_cases h₁f : hf.order = ⊤
|
||||
· rw [h₁f]
|
||||
rw [AnalyticAt.order_eq_top_iff] at h₁f
|
||||
let A := eventually_nhds_comp_composition h₁f ℓ.continuous
|
||||
simp at A
|
||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||||
|
||||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by
|
||||
apply analyticAt_const
|
||||
have : this.order = ⊤ := by
|
||||
rw [AnalyticAt.order_eq_top_iff]
|
||||
simp
|
||||
rw [this]
|
||||
· let n := hf.order.toNat
|
||||
have hn : hf.order = n := Eq.symm (ENat.coe_toNat h₁f)
|
||||
rw [hn]
|
||||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||||
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
||||
|
||||
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
||||
apply AnalyticAt.sub
|
||||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||||
exact analyticAt_const
|
||||
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
||||
exact pow t₁ n
|
||||
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
||||
apply AnalyticAt.mul
|
||||
exact t₀
|
||||
apply AnalyticAt.comp h₁g
|
||||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||||
simp
|
||||
|
||||
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||||
|
||||
have : t₁.order = (1 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use (fun _ ↦ ℓ 1)
|
||||
simp
|
||||
constructor
|
||||
· exact analyticAt_const
|
||||
· apply Filter.Eventually.of_forall
|
||||
intro x
|
||||
calc ℓ x - ℓ z₀
|
||||
_ = ℓ (x - z₀) := by
|
||||
exact Eq.symm (ContinuousLinearEquiv.map_sub ℓ x z₀)
|
||||
_ = ℓ ((x - z₀) * 1) := by
|
||||
simp
|
||||
_ = (x - z₀) * ℓ 1 := by
|
||||
rw [← smul_eq_mul, ← smul_eq_mul]
|
||||
exact ContinuousLinearEquiv.map_smul ℓ (x - z₀) 1
|
||||
|
||||
have : t₀.order = n := by
|
||||
rw [AnalyticAt.order_pow t₁, this]
|
||||
simp
|
||||
|
||||
rw [this]
|
||||
|
||||
have : (comp h₁g (ContinuousLinearEquiv.analyticAt ℓ z₀)).order = 0 := by
|
||||
rwa [AnalyticAt.order_eq_zero_iff]
|
||||
rw [this]
|
||||
|
||||
simp
|
|
@ -1,21 +1,25 @@
|
|||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Nevanlinna.analyticAt
|
||||
|
||||
|
||||
noncomputable def AnalyticOn.order
|
||||
{f : ℂ → ℂ} {U : Set ℂ} (hf : AnalyticOn ℂ f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
{z₀ : U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(n : ℕ) :
|
||||
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
hf.order z₀ = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
|
@ -44,7 +48,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
use {z₀.1}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
|
@ -87,59 +91,20 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
dsimp [AnalyticOn.order]
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticAt.order_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
theorem AnalyticOn.support_of_order₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOn ℂ f U) :
|
||||
Function.support hf.order = U.restrict f⁻¹' {0} := by
|
||||
ext u
|
||||
simp [AnalyticOn.order]
|
||||
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
||||
|
||||
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
|
@ -147,8 +112,8 @@ theorem AnalyticOn.eliminateZeros
|
|||
{U : Set ℂ}
|
||||
{A : Finset U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(n : ℂ → ℕ) :
|
||||
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
(n : U → ℕ) :
|
||||
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
|
@ -167,7 +132,7 @@ theorem AnalyticOn.eliminateZeros
|
|||
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
|
@ -208,8 +173,7 @@ theorem AnalyticOn.eliminateZeros
|
|||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
|
@ -259,14 +223,14 @@ theorem discreteZeros
|
|||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
|
||||
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
|
||||
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
||||
intro z
|
||||
|
||||
let A := XX hU h₁f h₂f z.2.1
|
||||
let A := XX hU h₁f h₂f z.1.2
|
||||
rw [eq_comm] at A
|
||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||
|
@ -311,9 +275,9 @@ theorem discreteZeros
|
|||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
|
||||
have F := h₂ε₂ y.1 h₂y
|
||||
rw [y.2.2] at F
|
||||
have : f y = 0 := by exact y.2
|
||||
rw [this] at F
|
||||
simp at F
|
||||
|
||||
have : g y.1 ≠ 0 := by
|
||||
|
@ -331,19 +295,19 @@ theorem finiteZeros
|
|||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
|
||||
Set.Finite (U.restrict f⁻¹' {0}) := by
|
||||
|
||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
||||
apply IsCompact.of_isClosed_subset h₂U
|
||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||
exact IsCompact.isClosed h₂U
|
||||
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
|
||||
apply IsClosed.preimage
|
||||
apply continuousOn_iff_continuous_restrict.1
|
||||
exact h₁f.continuousOn
|
||||
exact isClosed_singleton
|
||||
exact Set.inter_subset_left
|
||||
|
||||
apply hinter.finite
|
||||
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
|
||||
have : CompactSpace U := by
|
||||
exact isCompact_iff_compactSpace.mp h₂U
|
||||
|
||||
apply (IsClosed.isCompact closedness).finite
|
||||
exact discreteZeros h₁U h₁f h₂f
|
||||
rfl
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros
|
||||
|
@ -353,32 +317,20 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let ι : U → ℂ := Subtype.val
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||
|
||||
have : A₁.Finite := by
|
||||
apply Set.Finite.preimage
|
||||
exact Set.injOn_subtype_val
|
||||
exact finiteZeros h₁U h₂U h₁f h₂f
|
||||
let A := this.toFinset
|
||||
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
by_cases hz : z ∈ U
|
||||
· exact (h₁f z hz).order.toNat
|
||||
· exact 0
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n]
|
||||
simp
|
||||
dsimp [n, AnalyticOn.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
use A
|
||||
|
@ -386,11 +338,6 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
congr
|
||||
funext a
|
||||
congr
|
||||
dsimp [n]
|
||||
simp [a.2]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
|
@ -400,15 +347,115 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
|
||||
dsimp [A₁, ι]
|
||||
simp
|
||||
exact C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact this
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· exact inter
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros₂
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n, AnalyticOn.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· exact h₃g
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n, AnalyticOn.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· intro z
|
||||
|
||||
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
||||
have hφ : Function.mulSupport φ ⊆ A := by
|
||||
intro x hx
|
||||
simp [φ] at hx
|
||||
have : (h₁f.order x).toNat ≠ 0 := by
|
||||
by_contra C
|
||||
rw [C] at hx
|
||||
simp at hx
|
||||
simp [A]
|
||||
exact AnalyticAt.supp_order_toNat (h₁f x x.2) this
|
||||
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
||||
rw [inter z]
|
||||
rfl
|
||||
|
|
|
@ -1,449 +0,0 @@
|
|||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(n : ℕ) :
|
||||
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
||||
|
||||
-- Describe g near z₀
|
||||
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
||||
rw [eventually_nhds_iff]
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
||||
use t
|
||||
constructor
|
||||
· intro y h₁y
|
||||
by_cases h₂y : y = z₀
|
||||
· dsimp [g]; simp [h₂y]
|
||||
· dsimp [g]; simp [h₂y]
|
||||
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
||||
exact h₁t y h₁y
|
||||
norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· assumption
|
||||
· assumption
|
||||
|
||||
-- Describe g near points z₁ that are different from z₀
|
||||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
simp [g, hy]
|
||||
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
||||
|
||||
-- Use g and show that it has all required properties
|
||||
use g
|
||||
constructor
|
||||
· -- AnalyticOn ℂ g U
|
||||
intro z h₁z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z]
|
||||
apply AnalyticAt.congr h₁gloc
|
||||
exact Filter.EventuallyEq.symm g_near_z₀
|
||||
· simp_rw [eq_comm] at g_near_z₁
|
||||
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
||||
apply AnalyticAt.div
|
||||
exact hf z h₁z
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
apply analyticAt_const
|
||||
simp
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· simp [g]; tauto
|
||||
· intro z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z, g_near_z₀.self_of_nhds]
|
||||
exact h₃gloc.self_of_nhds
|
||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
||||
simp [h₂z]
|
||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
|
||||
simp; norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
|
||||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticAt.order_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{A : Finset U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(n : ℂ → ℕ) :
|
||||
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
-- case empty
|
||||
simp
|
||||
use f
|
||||
simp
|
||||
exact hf
|
||||
|
||||
-- case insert
|
||||
intro b₀ B hb iHyp
|
||||
intro hBinsert
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
rw [h₃g₀ z]
|
||||
rfl
|
||||
simp_rw [this]
|
||||
|
||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||
dsimp [φ]
|
||||
apply Finset.analyticAt_prod
|
||||
intro b _
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id ℂ
|
||||
exact analyticAt_const
|
||||
|
||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||
use φ
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· dsimp [φ]
|
||||
push_neg
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro a ha
|
||||
simp
|
||||
have : ¬ (b₀.1 - a.1 = 0) := by
|
||||
by_contra C
|
||||
rw [sub_eq_zero] at C
|
||||
rw [SetCoe.ext C] at hb
|
||||
tauto
|
||||
tauto
|
||||
· simp
|
||||
|
||||
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||
|
||||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
· exact h₁g₁
|
||||
· constructor
|
||||
· intro a h₁a
|
||||
by_cases h₂a : a = b₀
|
||||
· rwa [h₂a]
|
||||
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
||||
let B' := h₃g₁ a
|
||||
let C' := h₂g₀ a A'
|
||||
rw [B'] at C'
|
||||
exact right_ne_zero_of_smul C'
|
||||
· intro z
|
||||
let A' := h₃g₀ z
|
||||
rw [h₃g₁ z] at A'
|
||||
rw [A']
|
||||
rw [← smul_assoc]
|
||||
congr
|
||||
simp
|
||||
rw [Finset.prod_insert]
|
||||
ring
|
||||
exact hb
|
||||
|
||||
|
||||
theorem XX
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
|
||||
|
||||
intro hu
|
||||
apply ENat.coe_toNat
|
||||
by_contra C
|
||||
rw [(h₁f u hu).order_eq_top_iff] at C
|
||||
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
|
||||
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
|
||||
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
|
||||
tauto
|
||||
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
||||
intro z
|
||||
|
||||
let A := XX hU h₁f h₂f z.2.1
|
||||
rw [eq_comm] at A
|
||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||
|
||||
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
||||
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
|
||||
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
|
||||
have : {0}ᶜ ∈ nhds (g z) := by
|
||||
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||
|
||||
let F := h₄g.preimage_mem_nhds this
|
||||
rw [Metric.mem_nhds_iff] at F
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
||||
use ε
|
||||
constructor; exact h₁ε
|
||||
intro y hy
|
||||
let G := h₂ε hy
|
||||
simp at G
|
||||
exact G
|
||||
obtain ⟨ε₁, h₁ε₁⟩ := this
|
||||
|
||||
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
||||
use min ε₁ ε₂
|
||||
constructor
|
||||
· have : 0 < min ε₁ ε₂ := by
|
||||
rw [lt_min_iff]
|
||||
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
||||
exact this
|
||||
|
||||
intro y
|
||||
intro h₁y
|
||||
|
||||
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
||||
|
||||
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
|
||||
have F := h₂ε₂ y.1 h₂y
|
||||
rw [y.2.2] at F
|
||||
simp at F
|
||||
|
||||
have : g y.1 ≠ 0 := by
|
||||
exact h₁ε₁.2 y h₃y
|
||||
simp [this] at F
|
||||
ext
|
||||
rw [sub_eq_zero] at F
|
||||
tauto
|
||||
|
||||
|
||||
theorem finiteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
|
||||
|
||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
||||
apply IsCompact.of_isClosed_subset h₂U
|
||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
||||
exact IsCompact.isClosed h₂U
|
||||
exact isClosed_singleton
|
||||
exact Set.inter_subset_left
|
||||
|
||||
apply hinter.finite
|
||||
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
|
||||
exact discreteZeros h₁U h₁f h₂f
|
||||
rfl
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||
|
||||
let ι : U → ℂ := Subtype.val
|
||||
|
||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||
|
||||
have : A₁.Finite := by
|
||||
apply Set.Finite.preimage
|
||||
exact Set.injOn_subtype_val
|
||||
exact finiteZeros h₁U h₂U h₁f h₂f
|
||||
let A := this.toFinset
|
||||
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
by_cases hz : z ∈ U
|
||||
· exact (h₁f z hz).order.toNat
|
||||
· exact 0
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n]
|
||||
simp
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
use A
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
congr
|
||||
funext a
|
||||
congr
|
||||
dsimp [n]
|
||||
simp [a.2]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
|
||||
dsimp [A₁, ι]
|
||||
simp
|
||||
exact C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact this
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· exact inter
|
||||
|
||||
|
||||
noncomputable def AnalyticOn.order
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOn ℂ f U) :
|
||||
ℂ → ℕ∞ := by
|
||||
intro z
|
||||
if hz : z ∈ U then
|
||||
exact (hf z hz).order
|
||||
else
|
||||
exact 0
|
||||
|
||||
|
||||
theorem AnalyticOnCompact.eliminateZeros₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ u, (z - u) ^ (h₁f.order u).toNat) • g z := by
|
||||
|
||||
obtain ⟨g, A, h₁g, h₂g, h₃g⟩ := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f
|
||||
|
||||
use g
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· exact h₂g
|
||||
· intro z
|
||||
rw [h₃g z]
|
||||
congr
|
||||
|
||||
sorry
|
|
@ -1,9 +0,0 @@
|
|||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
/-
|
||||
|
||||
Here we would like to define differential operators, following EGA 4-1, §20.
|
||||
This is work to be done in the future.
|
||||
|
||||
-/
|
|
@ -125,6 +125,23 @@ theorem HolomorphicAt.analyticAt
|
|||
exact IsOpen.mem_nhds h₁s h₂s
|
||||
|
||||
|
||||
theorem AnalyticAt.holomorphicAt
|
||||
[CompleteSpace F]
|
||||
{f : ℂ → F}
|
||||
{x : ℂ} :
|
||||
AnalyticAt ℂ f x → HolomorphicAt f x := by
|
||||
intro hf
|
||||
rw [HolomorphicAt_iff]
|
||||
use {x : ℂ | AnalyticAt ℂ f x}
|
||||
constructor
|
||||
· exact isOpen_analyticAt ℂ f
|
||||
· constructor
|
||||
· simpa
|
||||
· intro z hz
|
||||
simp at hz
|
||||
exact differentiableAt hz
|
||||
|
||||
|
||||
theorem HolomorphicAt.contDiffAt
|
||||
[CompleteSpace F]
|
||||
{f : ℂ → F}
|
||||
|
|
|
@ -1,172 +1,449 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||
|
||||
open Real
|
||||
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||
(h₂f : f 0 ≠ 0)
|
||||
(S : Finset ℕ)
|
||||
(a : S → ℂ)
|
||||
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
||||
(F : ℂ → ℂ)
|
||||
(h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z)
|
||||
(h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0)
|
||||
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) :
|
||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
||||
(h₁f : AnalyticOn ℂ f (Metric.closedBall 0 1))
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
|
||||
|
||||
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||
have h₁f : AnalyticOn ℂ f (Metric.closedBall (0 : ℂ) 1) := by sorry
|
||||
have h₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by sorry
|
||||
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) :=
|
||||
(convex_closedBall (0 : ℂ) 1).isPreconnected
|
||||
|
||||
let α := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f
|
||||
obtain ⟨g, A, h'₁g, h₂g, h₃g⟩ := α
|
||||
have h₁g : ∀ z ∈ Metric.closedBall 0 1, HolomorphicAt F z := by sorry
|
||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) :=
|
||||
isCompact_closedBall 0 1
|
||||
|
||||
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
||||
use 0; simp; exact h₂f
|
||||
|
||||
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
|
||||
|
||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by
|
||||
intro z h₁z
|
||||
apply AnalyticAt.holomorphicAt
|
||||
exact h₁F z h₁z
|
||||
|
||||
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
||||
intro z hz
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply h₁F z hz
|
||||
exact h₂F z hz
|
||||
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||
|
||||
have t₂ : ∀ s, f (a s) = 0 := by
|
||||
intro s
|
||||
rw [h₃F]
|
||||
simp
|
||||
right
|
||||
apply Finset.prod_eq_zero_iff.2
|
||||
use s
|
||||
simp
|
||||
|
||||
let logAbsf := fun w ↦ Real.log ‖f w‖
|
||||
have s₀ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
||||
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
||||
intro z h₁z h₂z
|
||||
dsimp [logAbsf]
|
||||
rw [h₃F]
|
||||
simp_rw [Complex.abs.map_mul]
|
||||
rw [Complex.abs_prod]
|
||||
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
rw [h₃F]
|
||||
rw [smul_eq_mul]
|
||||
rw [norm_mul]
|
||||
rw [norm_prod]
|
||||
left
|
||||
arg 2
|
||||
intro b
|
||||
rw [norm_pow]
|
||||
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
||||
rw [Real.log_mul]
|
||||
rw [Real.log_prod]
|
||||
rfl
|
||||
intro s hs
|
||||
simp
|
||||
by_contra ha'
|
||||
rw [ha'] at h₂z
|
||||
exact h₂z (t₂ s)
|
||||
conv =>
|
||||
left
|
||||
left
|
||||
arg 2
|
||||
intro s
|
||||
rw [Real.log_pow]
|
||||
dsimp [G]
|
||||
abel
|
||||
|
||||
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
||||
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
|
||||
intro s hs
|
||||
simp at hs
|
||||
simp
|
||||
intro h₂s
|
||||
rw [h₂s] at h₂z
|
||||
tauto
|
||||
exact this
|
||||
|
||||
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
||||
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
|
||||
intro s hs
|
||||
simp at hs
|
||||
simp
|
||||
intro h₂s
|
||||
rw [h₂s] at h₂z
|
||||
tauto
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
exact this
|
||||
|
||||
-- Complex.abs (F z) ≠ 0
|
||||
simp
|
||||
exact h₂F z h₁z
|
||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||||
by_contra h'
|
||||
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||
simp at h''
|
||||
rw [h''] at h₂z
|
||||
let A := t₂ s
|
||||
exact h₂z A
|
||||
|
||||
have s₁ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||
intro z h₁z h₂z
|
||||
rw [s₀ z h₁z]
|
||||
|
||||
have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||
|
||||
rw [intervalIntegral.integral_congr_ae]
|
||||
rw [MeasureTheory.ae_iff]
|
||||
apply Set.Countable.measure_zero
|
||||
simp
|
||||
assumption
|
||||
|
||||
have : 0 ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||
rw [s₁ 0 this h₂f] at t₁
|
||||
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
||||
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
||||
intro a ha
|
||||
simp at ha
|
||||
simp
|
||||
by_contra C
|
||||
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
|
||||
circleMap_mem_closedBall 0 (zero_le_one' ℝ) a
|
||||
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
||||
|
||||
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
rw [h₃F]
|
||||
apply Set.Countable.mono t₀
|
||||
apply Set.Countable.preimage_circleMap
|
||||
apply Set.Finite.countable
|
||||
let A := finiteZeros h₁U h₂U h₁f h'₂f
|
||||
|
||||
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
|
||||
ext z
|
||||
simp
|
||||
tauto
|
||||
rw [this]
|
||||
exact Set.Finite.image Subtype.val A
|
||||
exact Ne.symm (zero_ne_one' ℝ)
|
||||
|
||||
|
||||
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
||||
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
||||
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||
dsimp [G]
|
||||
rw [intervalIntegral.integral_add]
|
||||
rw [intervalIntegral.integral_finset_sum]
|
||||
simp_rw [intervalIntegral.integral_const_mul]
|
||||
|
||||
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
||||
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
||||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||
intro i _
|
||||
apply IntervalIntegrable.const_mul
|
||||
--simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
constructor
|
||||
· have : (circleMap 0 1 x) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||
exact h₂F (circleMap 0 1 x) this
|
||||
· by_contra h'
|
||||
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||
have : circleMap 0 1 x = a s := by
|
||||
rw [← sub_zero (circleMap 0 1 x)]
|
||||
nth_rw 2 [← h₂s]
|
||||
simp
|
||||
let A := ha s
|
||||
rw [← this] at A
|
||||
simp at A
|
||||
|
||||
have {θ} : (circleMap 0 1 θ) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
||||
simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁
|
||||
rw [intervalIntegral.integral_sub] at t₁
|
||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||
by_contra ha'
|
||||
conv at h₂i =>
|
||||
arg 1
|
||||
rw [← ha']
|
||||
rw [Complex.norm_eq_abs]
|
||||
rw [abs_circleMap_zero 1 x]
|
||||
simp
|
||||
tauto
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp [h₂F]
|
||||
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply DifferentiableAt.continuousAt (𝕜 := ℂ )
|
||||
apply HolomorphicAt.differentiableAt
|
||||
simp [h'₁F]
|
||||
-- ContinuousAt (fun x => circleMap 0 1 x) x
|
||||
apply Continuous.continuousAt
|
||||
apply continuous_circleMap
|
||||
|
||||
simp_rw [int₀ (ha _)] at t₁
|
||||
simp at t₁
|
||||
rw [t₁]
|
||||
have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
|
||||
= ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (fun x => (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
apply IntervalIntegrable.sum
|
||||
intro i _
|
||||
apply IntervalIntegrable.const_mul
|
||||
--have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2
|
||||
--simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
--have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
|
||||
by_contra ha'
|
||||
conv at h₂i =>
|
||||
arg 1
|
||||
rw [← ha']
|
||||
rw [Complex.norm_eq_abs]
|
||||
rw [abs_circleMap_zero 1 x]
|
||||
simp
|
||||
tauto
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
|
||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
||||
intro z hz
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply h'₁F z hz
|
||||
exact h₂F z hz
|
||||
|
||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||
|
||||
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
|
||||
rw [t₁] at decompose_int_G
|
||||
|
||||
conv at decompose_int_G =>
|
||||
right
|
||||
right
|
||||
arg 2
|
||||
intro x
|
||||
right
|
||||
rw [int₃ x.2]
|
||||
simp at decompose_int_G
|
||||
|
||||
rw [int_logAbs_f_eq_int_G]
|
||||
rw [decompose_int_G]
|
||||
rw [h₃F]
|
||||
simp
|
||||
have {w : ℝ} : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by
|
||||
ring_nf
|
||||
simp [mul_inv_cancel₀ Real.pi_ne_zero]
|
||||
have {l : ℝ} : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
|
||||
calc π⁻¹ * 2⁻¹ * (2 * π * l)
|
||||
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
|
||||
_ = π⁻¹ * π * l := by ring
|
||||
_ = (π⁻¹ * π) * l := by ring
|
||||
_ = 1 * l := by
|
||||
rw [inv_mul_cancel₀]
|
||||
exact pi_ne_zero
|
||||
_ = l := by simp
|
||||
rw [this]
|
||||
rw [log_mul]
|
||||
rw [log_prod]
|
||||
simp
|
||||
rfl
|
||||
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
intro i _
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
|
||||
rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h₁f h'₂f).toFinset)]
|
||||
simp
|
||||
by_contra ha'
|
||||
let A := ha i
|
||||
rw [← ha'] at A
|
||||
simp
|
||||
intro x ⟨h₁x, _⟩
|
||||
simp
|
||||
|
||||
dsimp [AnalyticOn.order] at h₁x
|
||||
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
|
||||
exact AnalyticAt.supp_order_toNat (AnalyticOn.order.proof_1 h₁f x) h₁x
|
||||
|
||||
--
|
||||
intro x hx
|
||||
simp at hx
|
||||
simp
|
||||
intro h₁x
|
||||
nth_rw 1 [← h₁x] at h₂f
|
||||
tauto
|
||||
|
||||
--
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro x hx
|
||||
simp at hx
|
||||
simp
|
||||
intro h₁x
|
||||
nth_rw 1 [← h₁x] at h₂f
|
||||
tauto
|
||||
|
||||
--
|
||||
simp
|
||||
apply h₂F
|
||||
simp
|
||||
|
||||
|
||||
lemma const_mul_circleMap_zero
|
||||
{R θ : ℝ} :
|
||||
circleMap 0 R θ = R * circleMap 0 1 θ := by
|
||||
rw [circleMap_zero, circleMap_zero]
|
||||
simp
|
||||
|
||||
|
||||
theorem jensen
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : AnalyticOn ℂ f (Metric.closedBall 0 R))
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
|
||||
|
||||
|
||||
let ℓ : ℂ ≃L[ℂ] ℂ :=
|
||||
{
|
||||
toFun := fun x ↦ R * x
|
||||
map_add' := fun x y => DistribSMul.smul_add R x y
|
||||
map_smul' := fun m x => mul_smul_comm m (↑R) x
|
||||
invFun := fun x ↦ R⁻¹ * x
|
||||
left_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
|
||||
simp
|
||||
exact ne_of_gt hR
|
||||
right_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
|
||||
simp
|
||||
exact ne_of_gt hR
|
||||
continuous_toFun := continuous_const_smul R
|
||||
continuous_invFun := continuous_const_smul R⁻¹
|
||||
}
|
||||
|
||||
|
||||
let F := f ∘ ℓ
|
||||
|
||||
have h₁F : AnalyticOn ℂ F (Metric.closedBall 0 1) := by
|
||||
apply AnalyticOn.comp (t := Metric.closedBall 0 R)
|
||||
exact h₁f
|
||||
intro x _
|
||||
apply ℓ.toContinuousLinearMap.analyticAt x
|
||||
|
||||
intro x hx
|
||||
have : ℓ x = R * x := by rfl
|
||||
rw [this]
|
||||
simp
|
||||
simp at hx
|
||||
rw [abs_of_pos hR]
|
||||
calc R * Complex.abs x
|
||||
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
|
||||
_ = R := by simp
|
||||
|
||||
have h₂F : F 0 ≠ 0 := by
|
||||
dsimp [F]
|
||||
have : ℓ 0 = R * 0 := by rfl
|
||||
rw [this]
|
||||
simpa
|
||||
|
||||
let A := jensen_case_R_eq_one F h₁F h₂F
|
||||
|
||||
dsimp [F] at A
|
||||
have {x : ℂ} : ℓ x = R * x := by rfl
|
||||
repeat
|
||||
simp_rw [this] at A
|
||||
simp at A
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
simp
|
||||
rw [A]
|
||||
simp_rw [← const_mul_circleMap_zero]
|
||||
simp
|
||||
|
||||
let e : (Metric.closedBall (0 : ℂ) 1) → (Metric.closedBall (0 : ℂ) R) := by
|
||||
intro ⟨x, hx⟩
|
||||
have hy : R • x ∈ Metric.closedBall (0 : ℂ) R := by
|
||||
simp
|
||||
simp at hx
|
||||
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||
rw [← this]
|
||||
norm_num
|
||||
calc R * Complex.abs x
|
||||
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
|
||||
_ = R := by simp
|
||||
exact ⟨R • x, hy⟩
|
||||
|
||||
let e' : (Metric.closedBall (0 : ℂ) R) → (Metric.closedBall (0 : ℂ) 1) := by
|
||||
intro ⟨x, hx⟩
|
||||
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ℂ) 1 := by
|
||||
simp
|
||||
simp at hx
|
||||
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||
rw [← this]
|
||||
norm_num
|
||||
calc R⁻¹ * Complex.abs x
|
||||
_ ≤ R⁻¹ * R := by
|
||||
apply mul_le_mul_of_nonneg_left hx
|
||||
apply inv_nonneg.mpr
|
||||
exact abs_eq_self.mp (id (Eq.symm this))
|
||||
_ = 1 := by
|
||||
apply inv_mul_cancel₀
|
||||
exact Ne.symm (ne_of_lt hR)
|
||||
exact ⟨R⁻¹ • x, hy⟩
|
||||
|
||||
apply finsum_eq_of_bijective e
|
||||
|
||||
|
||||
apply Function.bijective_iff_has_inverse.mpr
|
||||
use e'
|
||||
constructor
|
||||
· apply Function.leftInverse_iff_comp.mpr
|
||||
funext x
|
||||
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
rw [← smul_assoc, smul_eq_mul]
|
||||
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
|
||||
rw [one_smul]
|
||||
· apply Function.rightInverse_iff_comp.mpr
|
||||
funext x
|
||||
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
rw [← smul_assoc, smul_eq_mul]
|
||||
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
|
||||
rw [one_smul]
|
||||
|
||||
intro x
|
||||
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
simp
|
||||
exact h₀
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply ContDiffAt.continuousAt (f := f) (𝕜 := ℝ) (n := 1)
|
||||
apply HolomorphicAt.contDiffAt
|
||||
apply h₁f
|
||||
by_cases hx : x = (0 : ℂ)
|
||||
rw [hx]
|
||||
simp
|
||||
let A := continuous_circleMap 0 1
|
||||
apply A.continuousAt
|
||||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_finset_sum
|
||||
intro i _
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
|
||||
rw [log_mul, log_mul, log_inv, log_inv]
|
||||
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||
rw [← this]
|
||||
simp
|
||||
by_contra ha'
|
||||
let A := ha i
|
||||
rw [← ha'] at A
|
||||
simp at A
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
left
|
||||
congr 1
|
||||
|
||||
dsimp [AnalyticOn.order]
|
||||
rw [← AnalyticAt.order_comp_CLE ℓ]
|
||||
|
||||
--
|
||||
simpa
|
||||
--
|
||||
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||
rw [← this]
|
||||
apply inv_ne_zero
|
||||
exact Ne.symm (ne_of_lt hR)
|
||||
--
|
||||
exact Ne.symm (ne_of_lt hR)
|
||||
--
|
||||
simp
|
||||
constructor
|
||||
· assumption
|
||||
· exact Ne.symm (ne_of_lt hR)
|
||||
|
|
|
@ -1,287 +0,0 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||
|
||||
open Real
|
||||
|
||||
|
||||
noncomputable def Zeroset
|
||||
{f : ℂ → ℂ}
|
||||
{s : Set ℂ}
|
||||
(hf : ∀ z ∈ s, HolomorphicAt f z) :
|
||||
Set ℂ := by
|
||||
exact f⁻¹' {0} ∩ s
|
||||
|
||||
|
||||
noncomputable def ZeroFinset
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
Finset ℂ := by
|
||||
|
||||
let Z := f⁻¹' {0} ∩ Metric.closedBall (0 : ℂ) 1
|
||||
have hZ : Set.Finite Z := by
|
||||
dsimp [Z]
|
||||
rw [Set.inter_comm]
|
||||
apply finiteZeros
|
||||
-- Ball is preconnected
|
||||
apply IsConnected.isPreconnected
|
||||
apply Convex.isConnected
|
||||
exact convex_closedBall 0 1
|
||||
exact Set.nonempty_of_nonempty_subtype
|
||||
--
|
||||
exact isCompact_closedBall 0 1
|
||||
--
|
||||
intro x hx
|
||||
have A := (h₁f x hx)
|
||||
let B := HolomorphicAt_iff.1 A
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := B
|
||||
apply DifferentiableOn.analyticAt (s := s)
|
||||
intro z hz
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
apply h₃s
|
||||
exact hz
|
||||
exact IsOpen.mem_nhds h₁s h₂s
|
||||
--
|
||||
use 0
|
||||
constructor
|
||||
· simp
|
||||
· exact h₂f
|
||||
exact hZ.toFinset
|
||||
|
||||
|
||||
lemma ZeroFinset_mem_iff
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||
{h₂f : f 0 ≠ 0}
|
||||
(z : ℂ) :
|
||||
z ∈ ↑(ZeroFinset h₁f h₂f) ↔ z ∈ Metric.closedBall 0 1 ∧ f z = 0 := by
|
||||
dsimp [ZeroFinset]; simp
|
||||
tauto
|
||||
|
||||
|
||||
noncomputable def order
|
||||
{f : ℂ → ℂ}
|
||||
{h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z}
|
||||
{h₂f : f 0 ≠ 0} :
|
||||
ZeroFinset h₁f h₂f → ℕ := by
|
||||
intro i
|
||||
let A := ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
let B := (h₁f i.1 A).analyticAt
|
||||
exact B.order.toNat
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
||||
(h'₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, AnalyticAt ℂ f z)
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
log ‖f 0‖ = -∑ s : (ZeroFinset h₁f h₂f), order s * log (‖s.1‖⁻¹) + (2 * π )⁻¹ * ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ := by
|
||||
|
||||
have F : ℂ → ℂ := by sorry
|
||||
have h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z := by sorry
|
||||
have h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0 := by sorry
|
||||
have h₃F : f = fun z ↦ (F z) * ∏ s : ZeroFinset h₁f h₂f, (z - s) ^ (order s) := by sorry
|
||||
|
||||
let G := fun z ↦ log ‖F z‖ + ∑ s : ZeroFinset h₁f h₂f, (order s) * log ‖z - s‖
|
||||
|
||||
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
|
||||
intro z h₁z h₂z
|
||||
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
rw [h₃F]
|
||||
rw [norm_mul]
|
||||
rw [norm_prod]
|
||||
right
|
||||
arg 2
|
||||
intro b
|
||||
rw [norm_pow]
|
||||
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
|
||||
rw [Real.log_mul]
|
||||
rw [Real.log_prod]
|
||||
conv =>
|
||||
left
|
||||
right
|
||||
arg 2
|
||||
intro s
|
||||
rw [Real.log_pow]
|
||||
dsimp [G]
|
||||
|
||||
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
|
||||
simp
|
||||
intro s hs
|
||||
rw [ZeroFinset_mem_iff h₁f s] at hs
|
||||
rw [← hs.2] at h₂z
|
||||
tauto
|
||||
|
||||
-- Complex.abs (F z) ≠ 0
|
||||
simp
|
||||
exact h₂F z h₁z
|
||||
|
||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||||
by_contra C
|
||||
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
|
||||
simp at h₂s
|
||||
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
|
||||
tauto
|
||||
|
||||
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||
|
||||
rw [intervalIntegral.integral_congr_ae]
|
||||
rw [MeasureTheory.ae_iff]
|
||||
apply Set.Countable.measure_zero
|
||||
simp
|
||||
|
||||
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
||||
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
||||
intro a ha
|
||||
simp at ha
|
||||
simp
|
||||
by_contra C
|
||||
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
|
||||
sorry
|
||||
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
||||
|
||||
apply Set.Countable.mono t₀
|
||||
apply Set.Countable.preimage_circleMap
|
||||
apply Set.Finite.countable
|
||||
apply finiteZeros
|
||||
|
||||
-- IsPreconnected (Metric.closedBall (0 : ℂ) 1)
|
||||
apply IsConnected.isPreconnected
|
||||
apply Convex.isConnected
|
||||
exact convex_closedBall 0 1
|
||||
exact Set.nonempty_of_nonempty_subtype
|
||||
--
|
||||
exact isCompact_closedBall 0 1
|
||||
--
|
||||
exact h'₁f
|
||||
use 0
|
||||
exact ⟨Metric.mem_closedBall_self (zero_le_one' ℝ), h₂f⟩
|
||||
exact Ne.symm (zero_ne_one' ℝ)
|
||||
|
||||
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f h₂f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||||
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
||||
sorry
|
||||
|
||||
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f h₂f).attach, ↑(order x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||
dsimp [G]
|
||||
rw [intervalIntegral.integral_add]
|
||||
rw [intervalIntegral.integral_finset_sum]
|
||||
simp_rw [intervalIntegral.integral_const_mul]
|
||||
|
||||
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
|
||||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||
intro i hi
|
||||
apply IntervalIntegrable.const_mul
|
||||
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
|
||||
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
|
||||
by_contra ha'
|
||||
conv at h₂i =>
|
||||
arg 1
|
||||
rw [← ha']
|
||||
rw [Complex.norm_eq_abs]
|
||||
rw [abs_circleMap_zero 1 x]
|
||||
simp
|
||||
tauto
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp [h₂F]
|
||||
--
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply DifferentiableAt.continuousAt (𝕜 := ℂ )
|
||||
apply HolomorphicAt.differentiableAt
|
||||
simp [h₁F]
|
||||
--
|
||||
apply Continuous.continuousAt
|
||||
apply continuous_circleMap
|
||||
--
|
||||
have : (fun x => ∑ s ∈ (ZeroFinset h₁f h₂f).attach, ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s)))
|
||||
= ∑ s ∈ (ZeroFinset h₁f h₂f).attach, (fun x => ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
apply IntervalIntegrable.sum
|
||||
intro i h₂i
|
||||
apply IntervalIntegrable.const_mul
|
||||
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
|
||||
by_contra ha'
|
||||
conv at h₂i =>
|
||||
arg 1
|
||||
rw [← ha']
|
||||
rw [Complex.norm_eq_abs]
|
||||
rw [abs_circleMap_zero 1 x]
|
||||
simp
|
||||
tauto
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
|
||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
||||
intro z hz
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply h₁F z hz
|
||||
exact h₂F z hz
|
||||
|
||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||
simp_rw [← Complex.norm_eq_abs] at this
|
||||
rw [t₁] at this
|
||||
|
||||
--let Z₁ := (ZeroFinset h₁f h₂f) ∩ (Metric.ball 0 1)
|
||||
|
||||
let Z₂ := { x : ZeroFinset h₁f h₂f | ‖x.1‖ = 1 }
|
||||
|
||||
|
||||
sorry
|
|
@ -8,10 +8,6 @@ import Nevanlinna.periodic_integrability
|
|||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
-- Integrability of periodic functions
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- Lemmas for the circleMap
|
||||
|
@ -46,6 +42,20 @@ lemma l₂ {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x))
|
|||
|
||||
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ < 1.
|
||||
|
||||
lemma int'₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1) :
|
||||
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - a‖) volume 0 (2 * π) := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.log
|
||||
fun_prop
|
||||
simp
|
||||
intro x
|
||||
by_contra h₁a
|
||||
rw [← h₁a] at ha
|
||||
simp at ha
|
||||
|
||||
|
||||
lemma int₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1) :
|
||||
|
@ -210,7 +220,6 @@ lemma int''₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖ for arbitrary
|
|||
rw [zero_add]
|
||||
exact int'₁
|
||||
|
||||
|
||||
lemma int₁ :
|
||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||
|
||||
|
@ -360,3 +369,16 @@ lemma int₂
|
|||
simp
|
||||
simp_rw [this]
|
||||
exact int₁
|
||||
|
||||
|
||||
lemma int₃
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.closedBall 0 1) :
|
||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||
by_cases h₁a : a ∈ Metric.ball 0 1
|
||||
· exact int₀ h₁a
|
||||
· apply int₂
|
||||
simp at ha
|
||||
simp at h₁a
|
||||
simp
|
||||
linarith
|
||||
|
|
Loading…
Reference in New Issue