Update analyticAt.lean
This commit is contained in:
parent
dbea68061b
commit
b988031047
|
@ -135,9 +135,22 @@ theorem AnalyticAt.order_congr
|
|||
(hf : f₁ =ᶠ[nhds z₀] f₂) :
|
||||
hf₁.order = (hf₁.congr hf).order := by
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
by_cases h₁f₁ : hf₁.order = ⊤
|
||||
rw [h₁f₁, eq_comm, AnalyticAt.order_eq_top_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff] at h₁f₁
|
||||
exact Filter.EventuallyEq.rw h₁f₁ (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||||
--
|
||||
let n := hf₁.order.toNat
|
||||
have hn : hf₁.order = n := Eq.symm (ENat.coe_toNat h₁f₁)
|
||||
rw [hn, eq_comm, AnalyticAt.order_eq_nat_iff]
|
||||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||||
use g
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· exact Filter.EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||||
|
||||
|
||||
theorem AnalyticAt.order_comp_CLE
|
||||
|
@ -154,7 +167,8 @@ theorem AnalyticAt.order_comp_CLE
|
|||
simp at A
|
||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||||
|
||||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const
|
||||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by
|
||||
apply analyticAt_const
|
||||
have : this.order = ⊤ := by
|
||||
rw [AnalyticAt.order_eq_top_iff]
|
||||
simp
|
||||
|
|
Loading…
Reference in New Issue