Working…
This commit is contained in:
parent
fa2e431f4c
commit
ef7e1df191
|
@ -50,3 +50,27 @@ theorem AnalyticAt.order_mul
|
|||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticAt.order_eq_zero_iff
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticAt ℂ f z₀) :
|
||||
hf.order = 0 ↔ f z₀ ≠ 0 := by
|
||||
|
||||
have : (0 : ENat) = (0 : Nat) := by rfl
|
||||
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
|
||||
|
||||
constructor
|
||||
· intro hz
|
||||
obtain ⟨g, _, h₂g, h₃g⟩ := hz
|
||||
simp at h₃g
|
||||
rw [Filter.Eventually.self_of_nhds h₃g]
|
||||
tauto
|
||||
· intro hz
|
||||
use f
|
||||
constructor
|
||||
· exact hf
|
||||
· constructor
|
||||
· exact hz
|
||||
· simp
|
||||
|
|
|
@ -97,6 +97,26 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticOn.support_of_order₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOn ℂ f U) :
|
||||
Function.support hf.order = U.restrict f⁻¹' {0} := by
|
||||
ext u
|
||||
simp [AnalyticOn.order]
|
||||
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
||||
|
||||
|
||||
theorem AnalyticOn.support_of_order₂
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Function.support (ENat.toNat ∘ h₁f.order) = U.restrict f⁻¹' {0} := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
|
@ -358,16 +378,11 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
|||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
by_cases hz : z ∈ U
|
||||
· exact (h₁f z hz).order.toNat
|
||||
· exact 0
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n]
|
||||
simp
|
||||
dsimp [n, AnalyticOn.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
@ -375,14 +390,9 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
|||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f.order a).toNat) • g z := by
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
congr
|
||||
funext a
|
||||
congr
|
||||
dsimp [n]
|
||||
simp [a.2]
|
||||
|
||||
|
||||
constructor
|
||||
|
@ -400,5 +410,15 @@ theorem AnalyticOnCompact.eliminateZeros₁
|
|||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
·
|
||||
exact inter
|
||||
· intro z
|
||||
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
||||
have hφ : Function.mulSupport φ ⊆ A := by
|
||||
intro x hx
|
||||
simp [φ] at hx
|
||||
have : (h₁f.order x).toNat ≠ 0 := by
|
||||
sorry
|
||||
|
||||
sorry
|
||||
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
||||
rw [inter z]
|
||||
rfl
|
||||
|
|
Loading…
Reference in New Issue