Update analyticOn_zeroSet.lean

This commit is contained in:
Stefan Kebekus 2024-09-10 11:21:49 +02:00
parent 5dc437751b
commit cd58c18a78
1 changed files with 9 additions and 9 deletions

View File

@ -285,19 +285,19 @@ theorem finiteZeros
(h₂U : IsCompact U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
Set.Finite ((U.restrict f)⁻¹' {0}) := by
Set.Finite (U.restrict f⁻¹' {0}) := by
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
apply IsCompact.of_isClosed_subset h₂U
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
exact IsCompact.isClosed h₂U
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
apply IsClosed.preimage
apply continuousOn_iff_continuous_restrict.1
exact h₁f.continuousOn
exact isClosed_singleton
exact Set.inter_subset_left
apply hinter.finite
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
have : CompactSpace U := by
exact isCompact_iff_compactSpace.mp h₂U
apply (IsClosed.isCompact closedness).finite
exact discreteZeros h₁U h₁f h₂f
rfl
theorem AnalyticOnCompact.eliminateZeros