From cd58c18a7803a32cbad8e6f7fbf488b9cb01699a Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Tue, 10 Sep 2024 11:21:49 +0200 Subject: [PATCH] Update analyticOn_zeroSet.lean --- Nevanlinna/analyticOn_zeroSet.lean | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/Nevanlinna/analyticOn_zeroSet.lean b/Nevanlinna/analyticOn_zeroSet.lean index 8295200..5daff26 100644 --- a/Nevanlinna/analyticOn_zeroSet.lean +++ b/Nevanlinna/analyticOn_zeroSet.lean @@ -285,19 +285,19 @@ theorem finiteZeros (h₂U : IsCompact U) (h₁f : AnalyticOn ℂ f U) (h₂f : ∃ u ∈ U, f u ≠ 0) : - Set.Finite ((U.restrict f)⁻¹' {0}) := by + Set.Finite (U.restrict f⁻¹' {0}) := by - have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by - apply IsCompact.of_isClosed_subset h₂U - apply h₁f.continuousOn.preimage_isClosed_of_isClosed - exact IsCompact.isClosed h₂U + have closedness : IsClosed (U.restrict f⁻¹' {0}) := by + apply IsClosed.preimage + apply continuousOn_iff_continuous_restrict.1 + exact h₁f.continuousOn exact isClosed_singleton - exact Set.inter_subset_left - apply hinter.finite - apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0})) + have : CompactSpace U := by + exact isCompact_iff_compactSpace.mp h₂U + + apply (IsClosed.isCompact closedness).finite exact discreteZeros h₁U h₁f h₂f - rfl theorem AnalyticOnCompact.eliminateZeros