nevanlinna/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean

210 lines
5.9 KiB
Plaintext
Raw Normal View History

2024-11-25 14:25:00 +01:00
import Nevanlinna.stronglyMeromorphicOn
2024-11-28 16:52:56 +01:00
import Nevanlinna.meromorphicOn
2024-11-26 20:04:58 +01:00
import Nevanlinna.meromorphicOn_divisor
2024-11-25 14:25:00 +01:00
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
theorem analyticAt_ratlPolynomial₁
{z : }
(d : )
(P : Finset ) :
z ∉ P → AnalyticAt (∏ u ∈ P, fun z ↦ (z - u) ^ d u) z := by
intro hz
rw [Finset.prod_fn]
apply Finset.analyticAt_prod
intro u hu
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
rw [sub_ne_zero, ne_comm]
exact ne_of_mem_of_not_mem hu hz
theorem stronglyMeromorphicOn_ratlPolynomial₂
(d : )
(P : Finset ) :
StronglyMeromorphicOn (∏ u ∈ P, fun z ↦ (z - u) ^ d u) := by
intro z hz
by_cases h₂z : z ∈ P
· rw [← Finset.mul_prod_erase P _ h₂z]
right
use d z
use ∏ x ∈ P.erase z, fun z => (z - x) ^ d x
2024-11-25 14:25:00 +01:00
constructor
· have : z ∉ P.erase z := Finset.not_mem_erase z P
apply analyticAt_ratlPolynomial₁ d (P.erase z) this
2024-11-25 14:25:00 +01:00
· constructor
· simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro u hu
apply zpow_ne_zero
rw [sub_ne_zero]
by_contra hCon
rw [hCon] at hu
let A := Finset.not_mem_erase u P
tauto
· exact Filter.Eventually.of_forall (congrFun rfl)
· apply AnalyticAt.stronglyMeromorphicAt
exact analyticAt_ratlPolynomial₁ d P (z := z) h₂z
theorem stronglyMeromorphicOn_ratlPolynomial₃
(d : ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) := by
by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite
· rw [finprod_eq_prod _ hd]
apply stronglyMeromorphicOn_ratlPolynomial₂ d hd.toFinset
· rw [finprod_of_infinite_mulSupport hd]
apply AnalyticOn.stronglyMeromorphicOn
apply analyticOnNhd_const
2024-11-27 11:54:31 +01:00
2024-11-28 18:24:08 +01:00
theorem stronglyMeromorphicOn_ratlPolynomial₃U
(d : )
(U : Set ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
intro z hz
exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial)
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
{z : }
(d : )
(h₁d : Set.Finite d.support) :
(((stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn) z trivial).order = d z := by
have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by
ext u
constructor
· intro h
simp at h
2024-11-25 14:25:00 +01:00
simp
by_contra hCon
rw [hCon] at h
simp at h
tauto
· intro h
simp
by_contra hCon
let A := congrFun hCon u
simp at A
have t₁ : (0 : ) ^ d u ≠ 0 := ne_zero_of_eq_one A
rw [zpow_ne_zero_iff h] at t₁
tauto
rw [MeromorphicAt.order_eq_int_iff]
use ∏ x ∈ h₁d.toFinset.erase z, fun z => (z - x) ^ d x
2024-11-25 14:25:00 +01:00
constructor
· have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset
apply analyticAt_ratlPolynomial₁ d (h₁d.toFinset.erase z) this
2024-11-25 14:25:00 +01:00
· constructor
· simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro u hu
apply zpow_ne_zero
rw [sub_ne_zero]
by_contra hCon
rw [hCon] at hu
let A := Finset.not_mem_erase u h₁d.toFinset
tauto
· apply Filter.Eventually.of_forall
intro x
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
rwa [h₂d]
rw [finprod_eq_prod _ t₀]
have t₁ : h₁d.toFinset = t₀.toFinset := by
simp
rwa [eq_comm]
rw [t₁]
2024-11-25 14:25:00 +01:00
simp
rw [eq_comm]
have : z ∉ h₁d.toFinset.erase z := Finset.not_mem_erase z h₁d.toFinset
by_cases hz : z ∈ h₁d.toFinset
· rw [t₁] at hz
conv =>
right
rw [← Finset.mul_prod_erase t₀.toFinset _ hz]
· have : t₀.toFinset = t₀.toFinset.erase z := by
rw [eq_comm]
apply Finset.erase_eq_of_not_mem
rwa [t₁] at hz
rw [this]
have : (x - z) ^ d z = 1 := by
simp at hz
rw [hz]
simp
rw [this]
simp
2024-11-25 14:25:00 +01:00
2024-11-28 16:52:56 +01:00
theorem stronglyMeromorphicOn_ratlPolynomial₃order
{z : }
(d : ) :
((stronglyMeromorphicOn_ratlPolynomial₃ d) z trivial).meromorphicAt.order ≠ := by
have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by
ext u
constructor
· intro h
simp at h
simp
by_contra hCon
rw [hCon] at h
simp at h
tauto
· intro h
simp
by_contra hCon
let A := congrFun hCon u
simp at A
have t₁ : (0 : ) ^ d u ≠ 0 := ne_zero_of_eq_one A
rw [zpow_ne_zero_iff h] at t₁
tauto
by_cases hd : Set.Finite (Function.support d)
· rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d hd]
simp
· rw [← h₂d] at hd
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
exact hd
simp_rw [finprod_of_infinite_mulSupport this]
2024-11-28 18:24:08 +01:00
have : AnalyticAt (1 : ) z := by exact analyticAt_const
rw [AnalyticAt.meromorphicAt_order this]
rw [this.order_eq_zero_iff.2 (by simp)]
simp
2024-11-28 16:52:56 +01:00
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
(d : )
(h₁d : Set.Finite d.support) :
(stronglyMeromorphicOn_ratlPolynomial₃ d).meromorphicOn.divisor = d := by
funext z
rw [MeromorphicOn.divisor]
simp
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
simp
2024-11-27 11:54:31 +01:00
2024-11-28 16:52:56 +01:00
2024-11-27 11:54:31 +01:00
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
{U : Set }
(d : )
(h₁d : Set.Finite d.support)
(h₂d : d.support ⊆ U) :
(stronglyMeromorphicOn_ratlPolynomial₃U d U).meromorphicOn.divisor = d := by
funext z
rw [MeromorphicOn.divisor]
simp
by_cases hz : z ∈ U
· simp [hz]
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
simp
· simp [hz]
rw [eq_comm, ← Function.nmem_support]
tauto