Working…
This commit is contained in:
parent
8525ae1ece
commit
8bc84748a3
|
@ -105,14 +105,15 @@ theorem MeromorphicOn.clopen_of_order_eq_top
|
|||
· exact open_of_order_eq_top h₁f
|
||||
|
||||
|
||||
theorem MeromorphicOn.order_ne_top
|
||||
theorem MeromorphicOn.order_ne_top'
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsConnected U)
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||||
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||
(h₁f : MeromorphicOn f U)
|
||||
(h₂f : ∃ u : U, (h₁f u u.2).order ≠ ⊤) :
|
||||
∀ u : U, (h₁f u u.2).order ≠ ⊤ := by
|
||||
|
||||
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
|
||||
let A := h₁f.clopen_of_order_eq_top
|
||||
have : PreconnectedSpace U := by
|
||||
apply isPreconnected_iff_preconnectedSpace.mp
|
||||
exact IsConnected.isPreconnected hU
|
||||
|
@ -123,9 +124,24 @@ theorem MeromorphicOn.order_ne_top
|
|||
rw [← h] at this
|
||||
simp at this
|
||||
tauto
|
||||
· obtain ⟨u, hu⟩ := h₂f
|
||||
have : u ∈ (Set.univ : Set U) := by trivial
|
||||
rw [← h] at this
|
||||
simp at this
|
||||
rw [(h₁f u u.2).order_eq_zero_iff.2 hu] at this
|
||||
· obtain ⟨u, hU⟩ := h₂f
|
||||
have A : u ∈ Set.univ := by trivial
|
||||
rw [← h] at A
|
||||
simp at A
|
||||
tauto
|
||||
|
||||
|
||||
theorem MeromorphicOn.order_ne_top
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsConnected U)
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||||
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||
|
||||
apply MeromorphicOn.order_ne_top' hU h₁f.meromorphicOn
|
||||
obtain ⟨u, hu⟩ := h₂f
|
||||
use u
|
||||
rw [← (h₁f u u.2).order_eq_zero_iff] at hu
|
||||
rw [hu]
|
||||
simp
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.meromorphicOn
|
||||
import Nevanlinna.meromorphicOn_divisor
|
||||
import Nevanlinna.mathlibAddOn
|
||||
|
||||
|
@ -61,12 +62,6 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
|||
apply AnalyticOn.stronglyMeromorphicOn
|
||||
apply analyticOnNhd_const
|
||||
|
||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
||||
(d : ℂ → ℤ)
|
||||
(U : Set ℂ) :
|
||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||||
intro z hz
|
||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||
|
@ -140,6 +135,40 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
|||
simp
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
{z : ℂ}
|
||||
(d : ℂ → ℤ) :
|
||||
((stronglyMeromorphicOn_ratlPolynomial₃ d) z trivial).meromorphicAt.order ≠ ⊤ := by
|
||||
|
||||
have h₂d : (Function.mulSupport fun u z ↦ (z - u) ^ d u) = d.support := by
|
||||
ext u
|
||||
constructor
|
||||
· intro h
|
||||
simp at h
|
||||
simp
|
||||
by_contra hCon
|
||||
rw [hCon] at h
|
||||
simp at h
|
||||
tauto
|
||||
· intro h
|
||||
simp
|
||||
by_contra hCon
|
||||
let A := congrFun hCon u
|
||||
simp at A
|
||||
have t₁ : (0 : ℂ) ^ d u ≠ 0 := ne_zero_of_eq_one A
|
||||
rw [zpow_ne_zero_iff h] at t₁
|
||||
tauto
|
||||
|
||||
by_cases hd : Set.Finite (Function.support d)
|
||||
· rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d hd]
|
||||
simp
|
||||
· rw [← h₂d] at hd
|
||||
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
||||
exact hd
|
||||
simp_rw [finprod_of_infinite_mulSupport this]
|
||||
sorry
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||
(d : ℂ → ℤ)
|
||||
(h₁d : Set.Finite d.support) :
|
||||
|
@ -150,6 +179,7 @@ theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
|||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d h₁d]
|
||||
simp
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||||
{U : Set ℂ}
|
||||
(d : ℂ → ℤ)
|
||||
|
|
Loading…
Reference in New Issue